累积分布函数
CDF,統計學名詞
(重定向自分佈函數)
此條目需要擴充。 (2013年10月26日) |
累积分布函数(英語:cumulative distribution function,CDF)或概率分布函数,简称分布函数,是概率密度函數的积分,能完整描述一個實随机变量的概率分佈。
定義
對於所有實數值的随机变量 ,累积分布函数定義如下[1]:p. 77:
其中右侧表示随机变量 取值小于或等于 的概率。
對於 位于半闭区间 的概率,其中 ,因此定義是[1]:p. 84:
在上面的定義中,“小於或等於”符號“≤”是一種約定,不是普遍使用的(例如匈牙利文獻使用“<”),但這種區別對於離散分佈很重要。二項式分布和泊松分布的表格的正確使用取決於此約定。此外,像數學家保羅·皮埃爾·萊維(Paul Lévy)的特徵函數反演公式等重要公式也依賴於“小於或等於”公式。
性質
之值落在一區間 之內的機率為
一隨機變數 的CDF與其PDF的關係為
反函数
若累积分布函数 是连续的严格增函数,则存在其反函数 。累积分布函数的反函数可以用来生成服从该随机分布的随机变量。设若 是概率分布 的累积分布函数,并存在反函数 。若 是 区间上均匀分布的随机变量,则 服从 分布。
互补累积分布函数
互补累積分布函数(complementary cumulative distribution function、CCDF),是对连续函数,所有大于 的值,其出现概率的和。
參見
參考
- ^ 1.0 1.1 Park, Kun Il. Fundamentals of Probability and Stochastic Processes with Applications to Communications. Springer. 2018. ISBN 978-3-319-68074-3.
- ^ 《概率論與數理統計教程》茆詩松 程依明 濮曉龍
这是一篇关于数学的小作品。您可以通过编辑或修订扩充其内容。 |