數學上,特別是拓樸學中,開集是對實數開區間進行推廣之後得到的抽象集合

通常微積分的課程中,會借助歐式空間距離去描述數列極限;直觀上,當 越來越大時數列 要多靠近有多靠近的時候,就說 是數列 的極限,但這需要距離去嚴謹的描述「靠近程度」,開集就是來自於" 點附近"這樣的直觀概念。類似的,函數極限也需要距離的概念去嚴謹定義。

满足的点着蓝色。满足的点着红色。红色的点形成了开集。红色和蓝色的点的并集是闭集。

定義

直觀上,於「開集」或說「不含邊界的集合」中任取一點,都可以找到一個以此點為圓心,且半徑足夠小到落在「開集」裡的圓盤(但圓盤的邊界可能不在開集內)。開集的嚴謹定義由此而來。

歐式空間

所謂的 維歐式空間,指的是囊括所有实数n-元組 的集合(記為 )。 為了定義開集,可以推廣勾股定理,將   中任兩點  歐式距離定義為:

 

然後定義所謂的( 維)開球(open ball):

 

也就是直觀上,一個以 為球心, 為半徑但不包含表面的球體

這樣就可以作如下的定義:

定義 — 
  ,且對所有   ,存在一个   ,使 ,那麼就說子集  中的一個開集

也就是直觀上,取開集   的任意點   都有一個以   為球心的開球完全包含於  

賦距空间

只要把上節的歐式距離改成一般的度量,開集的概念很容易推廣到賦距空间 中。

以下把  中的開球(open ball)定義成:

 

這樣就可以作如下的定義:

定義 — 
   的子集,且對所有  ,存在   使  ,則稱    的一個開集

這的確推廣了歐式空間部分的定義,因為歐式距離   本身就組成了一個賦距空間 

賦距空間的開集還會有以下的性質:

定理 — 
  為賦距空間,則

(1)    也是   的開集。

(2) 若    都是   的開集,則   也是   的開集。

(3)     的一個子集族),若所有   都是   的開集,則   也是   的開集。(也就是直觀上,任意數量開集的聯集也是開集)

證明
(1) 對每個 都有 ,所以 是自己的一個開集;另外對所有 都有 (直觀上來說沒有點可以當開球的球心),所以邏輯上不用驗證是否有開球包含於 ,就可以得到 滿足開集的定義 (直觀上來說,前提為假的話,不論結論是否為真,「前提=>結論」都是對的)。 


(2) 若 ,依據假設存在  使得   ,這樣取  的話,就有 ,是故 也是  的開集。 


(3) 若 ,依照聯集的性質,存在   使得   ;但根據假設,   都是   的開集,換句話說,存在   使  ,那因為  ,所以有  ,是故   也是   的開集。 

事實上這些性質這就是拓扑空间定義的動機。

拓撲空間

開集是拓扑空间定義的基石;也就是從任意母集合   出發,再選取   的特定的子集族   ,規定   中的集合就是開集,这樣的子集族   被叫做   上的拓扑

定義 — 
  為集合,若   滿足

(1)  

(2) 若   

(3)   ,則   。(也就是說,任意數量開集的聯集也是開集)

則稱    上的拓撲,並稱   為一拓撲空間。任何   被稱為開集

根據上一節賦距空間的性質,取   為所有   的開集所構成的子集族,則   也是一拓撲空間。

例子

  • 度量空间 中,以点 为中心, 为半径的球体 为开集,任意的开集 包含以 为中心,充分小的 为半径的球体 
  • 流形中的开集为子流形

用处

开集在拓扑学分支中有著基础的重要性。當定义拓扑空间和其他拓扑结构(处理邻近性收敛此類概念,比如度量空间一致空间)時,都會用到开集的概念。

拓扑空间 的每個子集 都包含至少一个(可能为空)开集;最大的这种开集被叫做 内部。它可以通过取包含在 中的所有开集的并集来构造。

给定拓扑空间  以及函数 ,如果在 中的所有开集的前像是在 中的开集,則 连续的,這是實函數上的連續定義的推廣, 時這與實函數的連續定義等價。如果在 中的所有开集的 中的开集,映射 被叫做开映射

实直线上的开集都是可数個不相交开区间的并集。

相关条目

注释