機率公設
機率公理(英語:Probability axioms)是概率論的公理,任何事件發生的概率的定義均滿足概率公理。因其提出者为安德烈·柯尔莫果洛夫,也被稱为柯尔莫果洛夫公理(Kolmogorov axioms)。
某个事件的概率是定义在“全体”(universe)或者所有可能基础事件的样本空间时,概率必须满足以下柯尔莫果洛夫公理。
也可以说,概率可以被解释为定义在样本空间的子集的σ代数上的一个测度,那些子集为事件,使得所有集的测度为。这个性质很重要,因为这裡提出条件概率的自然概念。对于每一个非零概率A都可以在空间上定义另外一个概率:
通常读作“给定A时B的概率”。如果给定A时B的条件概率与B的概率相同,,则称A与B互相独立。
柯尔莫果洛夫公理
假设有一个基础集 ,其子集的集合解析失败 (SVG(MathML可通过浏览器插件启用):从服务器“http://localhost:6011/zh.wikipedia.org/v1/”返回无效的响应(“Math extension cannot connect to Restbase.”):): {\displaystyle \mathfrak{F}} 为σ代数,和一个给 的元素指定一个实数的函数 。 的元素,称为“事件”。
第一公理(非负性)
- 对于任意一个集合 , 即对于任意的事件 。
即,任一事件的概率都可以用 到 区间上的一个实数来表示。
第二公理(归一化)
- 。
即,整体样本集合中的某个基本事件发生的概率为1。更加明确地说,在样本集合之外已经不存在基本事件了。
这在一些错误的概率计算中经常被小看;如果你不能准确地定义整个样本集合,那么任意子集的概率也不可能被定义。
第三公理(可加性)
- 任意两两不相交事件 的可数序列满足 。
即,不相交子集的并的事件集合的概率为那些子集的概率的和。这也被称为是σ可加性。如果存在子集间的重叠,这一关系不成立。
又發展成Boole不等式,證明時常使用此公式: 。
概率论引理
从柯尔莫果洛夫公理可以推导出另外一些对计算概率有用的法则。
- ,
- ,