连续介质力学

连续介质力学(Continuum mechanics)又称连续体力学,是物理学、特别的是力学当中的一个分支,是处理包括固体流体在内的所谓“连续介质”(continuous medium)或“连续体”(continuum,台湾也简称连体)宏观性质的力学,由法国数学家奧古斯丁·路易·柯西在19世纪提出。

基本假设

连续介质力学的最基本假设是“连续介质假设”:即认为真实的流体和固体,可以近似看作连续的、充满全空间的介质组成,各部分间无空隙(pore or empty)存在,物质的宏观性质依然受牛顿力学的支配。此外,描述此介质各物理量所引用的数学函数,也均为连续函数

此基本假设忽略物质的具体微观结构(对固体和液体微观结构研究,属于凝聚态物理学的范畴),而用一组偏微分方程来表达宏观物理量(如质量,速度,压力等)。这些方程包括:本构方程(constitutive equation,也称物性方程,描述介质性质的方程),和基本的物理定律(如质量守恒定律动量守恒定律等)。连续介质力学排除了微观及宏观宇宙,只适用于一般工程科学的中等尺寸材料或对象,并不适用于:分子碰撞、原子内部、星体间等之力学分析[1]

研究对象

主要分支学科

连续介质力学:研究連續介質的物理學 固體力學:研究固體連續介質(不受力時有固定的形狀)的物理學 彈性理論:其固體在受到應力作用後,會恢復原來的形狀
塑性理論:固體在受到相當大的應力後,產生的永久變形 流變學:研究在外力作用下,物體的變形和流動
流体力学:研究流體連續介質(其形狀隨容器而變化)的物理學 非牛頓流體
牛頓流體


基本分支学科:

应用分支学科和交叉学科:

参考文献