File:Kaiser-Window-Spectra.svg

原始文件 (SVG文件,尺寸为700 × 525像素,文件大小:111 KB)


摘要

描述 Spectra of Kaiser windows for different parametric values. Note that the downward spikes in the side lobes should actually spike all they way to -infinity, since at these points the amplitude goes to zero. The fact that the minima are finite is an artifact of the finite plotting resolution.
日期 2007-09-19, revised 2019-03-21 by Bob K
来源 自己的作品
作者 RetoGalli
授权
(二次使用本文件)
我,本作品著作权人,特此采用以下许可协议发表本作品:
Creative Commons CC-Zero 本作品采用知识共享CC0 1.0 通用公有领域贡献许可协议授权。
采用本宣告发表本作品的人,已在法律允许的范围内,通过在全世界放弃其对本作品拥有的著作权法规定的所有权利(包括所有相关权利),将本作品贡献至公有领域。您可以复制、修改、传播和表演本作品,将其用于商业目的,无需要求授权。

SVG开发
InfoField
 
SVG的源代码为有效代码
V
 
矢量图使用GNU Octave创作。
Octave/gnuplot source
InfoField
click to expand

This graphic was created by the following Octave script:

pkg load signal
graphics_toolkit gnuplot

N  = 2^17;
n  = 0:N-1;
P  = 15;        % Maximum bin index drawn
dr = 100;       % dynamic range of plot
M  = 32;        % Fourier transform size as multiple of window length
k  = ([1:M*N]-1-M*N/2)/M;
k2 = [-P : 1/M : P];

% Uncomment warning() if a text() call includes ("fontname", "Symbol")
% warning("off", "Octave:missing-glyph");

h = figure;
hold on
box on
set(gca,'FontSize',10)

beta=4; alpha = beta/pi
w = besseli(0,beta*sqrt(1-(2*n/(N-1) -1).^2))/besseli(0,beta);

H = abs(fft([w zeros(1,(M-1)*N)]));
H = fftshift(H);
H = H/max(H);
H = 20*log10(H);
H = max(-dr,H);
H2 = interp1 (k, H, k2);

plot(k2, H2, "color", "blue", "linewidth", 2)
xlim([-P P])
ylim([-dr 6])
set(gca,"YTick", [0 : -10 : -dr])
grid("on")
ylabel("decibels")
xlabel("DFT bins")

%text(4.26, -36, '\pi\alpha=4; \alpha=1.27', "color", "blue", "fontsize", 12)
%But let's do it the instructive way:
str = ['\pi\alpha=' num2str(beta,'%1i') '; \alpha=' num2str(beta/pi,'%4.2f')];
text(4.26, -36, str, "color", "blue", "fontsize", 12)

beta=8; alpha = beta/pi
w = besseli(0,beta*sqrt(1-(2*n/(N-1) -1).^2))/besseli(0,beta);

H = abs(fft([w zeros(1,(M-1)*N)]));
H = fftshift(H);
H = H/max(H);
H = 20*log10(H);
H = max(-dr,H);
H2 = interp1 (k, H, k2);

plot(k2, H2, "color", "red", "linewidth", 2)

%text(2.5, -19.5,  '\pi\alpha=8; \alpha=2.55', "color", "red", "fontsize", 12)
%But let's do it the less "manual" way:
str = ['\pi\alpha=' num2str(beta,'%1i') '; \alpha=' num2str(beta/pi,'%4.2f')];
text(2.5, -19.5, str, "color", "red", "fontsize", 12)

title("Fourier transforms of two Kaiser windows")

% The following print() converts plain-text Greek characters in text() strings into Symbol font.
% Therefore it isn't necessary to include ("fontname", "Symbol") in the text() calls above,
% and doing so causes warnings, some of which can be suppressed by warning().
print(h,"-dsvg","-color",'C:\Users\BobK\Kaiser-Window-Spectra.svg')

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2019年3月22日 (五) 21:252019年3月22日 (五) 21:25版本的缩略图700 × 525(111 KB)Bob KUse definition of α from Window function article.
2007年9月19日 (三) 19:462007年9月19日 (三) 19:46版本的缩略图560 × 420(143 KB)RetoGalli{{Information |Description=Spectra of Kaiser windows for α of 4 and 8. Note that the downward spikes in the side lobes should actually spike all they way to -infinity, since at these points the amplitude goes to zero. The fact that the minima are finite

没有页面链接到本图像。

全域文件用途

以下其他wiki使用此文件:

元数据