原始文件 (3,000 × 2,400像素,文件大小:1.36 MB,MIME类型:image/jpeg


摘要

NASA's Spitzer Space Telescope has lifted the cosmic veil to see an otherwise hidden newborn star, while detecting the presence of water and carbon dioxide ices, as well as organic molecules. Using near-infrared light, Spitzer pierces through an optically dark cloud to detect the embedded outflow in an object called HH 46/47. Herbig-Haro (HH) objects are bright, nebulous regions of gas and dust that are usually buried within dark dust clouds. They are formed when supersonic gas ejected from a forming protostar, or embryonic star, interacts with the surrounding interstellar medium. These young stars are often detected only in the infrared.

HH 46/47 is a striking example of a low mass protostar ejecting a jet and creating a bipolar, or two-sided, outflow. The central protostar lies inside a dark cloud (known as a 'Bok globule') which is illuminated by the nearby Gum Nebula. Located at a distance of 1140 light-years and found in the constellation Vela, the protostar is hidden from view in the visible-light image (inset). With Spitzer, the star and its dazzling jets of molecular gas appear with clarity.

The Spitzer image (inset) was obtained with the infrared array camera. Emission at 3.6 microns is shown as blue, emission from 4.5 and 5.8 microns has been combined as green, and 8.0 micron emission is depicted as red. The 8-micron channel of the camera is sensitive to emission from polycyclic aromatic hydrocarbons. These organic molecules, comprised of carbon and hydrogen, are excited by the surrounding radiation field and become luminescent, accounting for the reddish cloud. Note that the boundary layer of the 8-micron mission corresponds to the lower right edge of the dark cloud in the visible-light picture.

The primary image shows a spectrum obtained with Spitzer's infrared spectrograph instrument, stretching from wavelengths of 5.5 microns to 20 microns. Spectra are graphical representations of a celestial object's unique blend of light. Characteristic patterns, or fingerprints, within the spectra allow astronomers to identify the object's chemical composition.

The broad depression in the center of the spectrum signifies the presence of silicates, which are chemically similar to beach sand. The depth of the silicate absorption feature indicates that the dusty cocoon surrounding the embedded protostar star is extremely thick. Other absorption dips are produced by water ice (blue) and carbon dioxide ice (green). The fact that water and carbon dioxide appear in solid form suggests that the material immediately surrounding the protostar is cold. In addition, the Spitzer spectrum includes the chemical signatures of methane (red) and methyl alcohol (orange).

原始上传日志

描述 HH46/47
日期
来源 http://www.spitzer.caltech.edu/images/1096-ssc2003-06g-Embedded-Outflow-in-HH-46-47 Archived link
作者 NASA/JPL-Caltech/A. Noriega-Crespo (SSC/Caltech), H. Kline (JPL)
授权
(二次使用本文件)
http://www.spitzer.caltech.edu/Media/mediaimages/copyright.shtml

Individual images

see http://gallery.spitzer.caltech.edu/Imagegallery/image.php?image_name=ssc2003-06g High quality tif files also avaliable.

许可协议

Public domain 本文件完全由NASA创作,在美国属于公有领域。根据NASA的版权方针,NASA的材料除非另有声明否则不受版权保护。(参见Template:PD-USGov/zhNASA版权方针页面JPL图片使用方针。)
警告:

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

image/jpeg

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2007年7月5日 (四) 21:172007年7月5日 (四) 21:17版本的缩略图3,000 × 2,400(1.36 MB)AnzibanonziNASA's Spitzer Space Telescope has lifted the cosmic veil to see an otherwise hidden newborn star, while detecting the presence of water and carbon dioxide ices, as well as organic molecules. Using near-infrared light, Spitzer pierces through an optically

以下2个页面使用本文件:

全域文件用途

以下其他wiki使用此文件:

元数据