File:Rolling Racers - Moment of inertia.gif

Rolling_Racers_-_Moment_of_inertia.gif (480 × 270像素,文件大小:1.6 MB,MIME类型:image/gif、​循环、​126帧、​4.2秒)


描述
English: An object's moment of inertia I determines how much it resists rotational motion. In this simulation, four objects are placed on a ramp and left to roll without slipping. Starting from rest, each will experience an angular acceleration based on their moment of inertia.

The objects are, from back to front:

  1. A hollow spherical shell (red)
  2. A solid ball (orange)
  3. A ring (green)
  4. A solid cylinder (blue)

At any moment in time, the forces acting on each object will be its weight, the normal force exerted by the plane on the object and the static friction force. As the weight force and the normal force act on a line through each object's center of mass, they result in no net torque. However, the force due to friction acts perpendicular to the contact point, and therefore it does result in a torque, which causes the object to rotate.

Since there is no slipping, the object's center of mass will travel with speed , where r is its radius, or the distance from a contact point to the axis of rotation, and ω its angular speed. Since static friction does no work, and dissipative forces are being ignored, we have conservation of energy. Therefore:

Solving for , we obtain:

Since the torque is constant we conclude, by Newton's 2nd Law for rotation , that the angular acceleration α is also constant. Therefore:

Where, v0 = 0 and d is the total distance traveled. Therefore, we have:

For a ramp with inclination θ, we have sin θ = h / d. Additionally, for a dimensionless constant k characteristic of the geometry of the object. Finally, we can write the angular acceleration α using the relation :

This final result reveals that, for objects of the same radius, the mass the object are irrelevant and what determines the rate of acceleration is the geometric distribution of their mass, which is represented by the value of k. Additionally, we observe that objects with larger values of k will accelerate more slowly.

This is illustrated in the animation. The values of k for each object are, from back to front: 2/3, 2/5, 1, 1/2. As predicted by the formula found above, the solid ball will have a larger acceleration, reaching the finish line first.
日期
来源 自己的作品
作者 Lucas Vieira
授权
(二次使用本文件)
Public domain 我,本作品著作权人,释出本作品至公有领域。这适用于全世界。
在一些国家这可能不合法;如果是这样的话,那么:
我无条件地授予任何人以任何目的使用本作品的权利,除非这些条件是法律规定所必需的。
其他版本 OGG Theora Video: small and [[:File:Rolling Racers - Moment of inertia (HD).ogv|large (HD) and for classroom educational purposes a static image of the finish at File:Rolling Racers - Moment of inertia Photofinish.jpg ]]

POV-Ray source code

Available at the video version's description page.

本图像已依据优质图像方针评估,被视为优质图像

العربية  جازايرية  беларуская  беларуская (тарашкевіца)  български  বাংলা  català  čeština  Cymraeg  Deutsch  Schweizer Hochdeutsch  Zazaki  Ελληνικά  English  Esperanto  español  eesti  euskara  فارسی  suomi  français  galego  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  italiano  日本語  Jawa  ქართული  한국어  kurdî  Lëtzebuergesch  lietuvių  македонски  മലയാളം  मराठी  Bahasa Melayu  Nederlands  Norfuk / Pitkern  polski  português  português do Brasil  rumantsch  română  русский  sicilianu  slovenčina  slovenščina  shqip  српски / srpski  svenska  தமிழ்  తెలుగు  ไทย  Tagalog  toki pona  Türkçe  українська  vèneto  Tiếng Việt  中文  中文(简体)  中文(繁體)  +/−

说明

添加一行文字以描述该文件所表现的内容
Comparision Of Moment Of Inertia for Different Solids.

此文件中描述的项目

描绘内容

共享资源质量评价 简体中文(已转写)

维基共享资源优质图像 简体中文(已转写)

文件来源 简体中文(已转写)

上传者的原创作品 简体中文(已转写)

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2021年6月16日 (三) 21:012021年6月16日 (三) 21:01版本的缩略图480 × 270(1.6 MB)TomFryersImprove render quality and increase resolution and framerate slightly
2012年12月23日 (日) 03:102012年12月23日 (日) 03:10版本的缩略图444 × 250(1.49 MB)LucasVB{{Information |Description=... |Source={{own}} |Date=2012-12-23 |Author= Lucas V. Barbosa |Permission={{PD-self}} |other_versions=OGG Theora video }}

没有页面使用本文件。

全域文件用途