File:Uniaxial.png
本预览的尺寸:240 × 600像素。 其他分辨率:96 × 240像素 | 192 × 480像素。
原始文件 (800 × 2,000像素,文件大小:26 KB,MIME类型:image/png)
此diagram图片可使用矢量图形重新创建为SVG文件。这具有很多好处;更多信息请参见共享资源:待清理媒体。如果存在此图片的SVG格式,请将其上传,然后将此模板替换为
{{vector version available|新图片名称}} 。
建议您将SVG命名为“Uniaxial.svg”,这样在使用Vector version available(或Vva)模板时就不需要填写新图片名称参数。 |
摘要
- Author: en:user:AndrewKepert
- Toolchain: MetaPost and TeX.
- Source: below
- Description: Illustration of a typical member of each of 7 infinite families of 3D point groups.
- Destination: en:Point groups in three dimensions.
- Permission: GFDL / CC
Source code
Instructions: on a system with a modern TeTeX or similar installed save the following two files, then run
mpost uniaxial && pdftex uniaxial
You will then need to use ghostscript or similar to make a raster image out of the pdf.
Source code author: en:user:AndrewKepert
Source code license: GPL
源代码
InfoField
PostScript code
picture pic[];
pair pt[],pt[]n,pt[]e,pt[]w,pt[]s,pt[]ne,pt[]nw,pt[]se,pt[]sw;
pair ux,uy,uz;
path unitcircle; unitcircle=fullcircle scaled 2;
boolean front[];
color colour[];
path p[];
u=16;
ux=.4*down*u;
uy=right*2u;
uz=up*.5u;
transform xyplane[];
(0,0) transformed xyplane0 = (0,0);
(1,0) transformed xyplane0 = ux;
(0,1) transformed xyplane0 = uy;
for i = -1 step 1/16 until 1:
xyplane[i]=xyplane[0] shifted (i*uz);
endfor
theta=10;
alpha=8;
N:=6;
for i = -1 step .5 until N+1:
pt[i] = right rotated theta rotated (360i/N) transformed xyplane0;
front[i]= ypart pt[i] < ypart xyplane0;
pt[i]e = right rotated (theta+alpha) rotated (360i/N) transformed xyplane0;
pt[i]w = right rotated (theta-alpha) rotated (360i/N) transformed xyplane0;
pt[i]n = right rotated theta rotated (360i/N) transformed xyplane[.75];
pt[i]ne = right rotated (theta+alpha) rotated (360i/N) transformed xyplane[.75];
pt[i]nw = right rotated (theta-alpha) rotated (360i/N) transformed xyplane[.75];
pt[i]s = right rotated theta rotated (360i/N) transformed xyplane[-.75];
pt[i]se = right rotated (theta+alpha) rotated (360i/N) transformed xyplane[-.75];
pt[i]sw = right rotated (theta-alpha) rotated (360i/N) transformed xyplane[-.75];
endfor
t0=directiontime uz of (unitcircle transformed xyplane0);
t1=directiontime -uz of (unitcircle transformed xyplane0);
t2=t0+length unitcircle;
path backface,frontface;
backface:=(subpath (t0,t1) of unitcircle transformed xyplane[1])
-- (subpath (t1,t0) of unitcircle transformed xyplane[-1])
-- cycle;
frontface:= (subpath (t1,t2) of unitcircle transformed xyplane[1])
-- (subpath (t2,t1) of unitcircle transformed xyplane[-1])
-- cycle;
colour0:=(.8,.85,1);
colour1:=.8[black,colour0];
colour2:=.6[black,colour1];
def constructribbon(expr delta)=
% stuff on back face
pic1:=image( for i = 0 step delta until N-eps: if not front[i]: fill p[i]; fi endfor
fill (subpath (t0,t1) of unitcircle transformed xyplane[1/16])
-- (subpath (t1,t0) of unitcircle transformed xyplane[-1/16])
-- cycle;);
% stuff on front face
pic2:=image( for i = 0 step delta until N-eps: if front[i]: fill p[i]; fi endfor
fill (subpath (t1,t2) of unitcircle transformed xyplane[1/16])
-- (subpath (t2,t1) of unitcircle transformed xyplane[-1/16])
-- cycle;);
% all of back face
pic0:=image(fill frontface withcolor colour0;
fill backface withcolor colour1;
draw pic1 withcolor colour2);
fill backface withcolor colour0;
fill frontface withcolor colour0;
draw pic1;
clip pic0 to frontface;
draw pic0;
draw pic2;
draw unitcircle transformed xyplane[1] withpen pencircle scaled 0.2 withcolor colour1;
draw subpath (t2,t1) of unitcircle transformed xyplane[-1] withpen pencircle scaled 0.2 withcolor colour1;
enddef;
beginfig(1)
for i=0 upto N-1:
p[i]:= pt[i]--pt[i]w--pt[i]ne--pt[i]e--cycle;
endfor
constructribbon(1);
endfig;
beginfig(2)
for i=0 upto N-1:
p[i]:= pt[i]w--pt[i]ne--pt[i]se--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(3)
for i=0 upto N-1:
p[i]:= pt[i]--pt[i]e--pt[i]n--pt[i]w--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(4)
for i=0 upto N-1:
%p[i]:= pt[i]--pt[i]ne--pt[i]e--pt[i]--pt[i]sw--pt[i]w--cycle ;
p[i]:= pt[i]ne--pt[i]e-- pt[i]sw--pt[i]w--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(5)
for i=0 upto N-1:
p[i]:= pt[i]n--pt[i]e--pt[i]s--pt[i]w--cycle ;
endfor
constructribbon(1);
endfig;
beginfig(6)
for i=0 upto N-1:
p[i]:= pt[i]--pt[i]e--pt[i]n--pt[i]w--cycle ;
p[i+.5]:= pt[i+.5]--pt[i+.5]e--pt[i+.5]s--pt[i+.5]w--cycle ;
endfor
constructribbon(1/2);
endfig;
beginfig(7)
for i=0 upto N-1:
if odd i:
p[i]:= pt[i]--pt[i]w--pt[i]ne--pt[i]e--cycle;
else:
p[i]:= pt[i]--pt[i]w--pt[i]se--pt[i]e--cycle;
fi
endfor
constructribbon(1);
endfig;
bye
Data
\input supp-pdf
{\tabskip=5pt \lineskiplimit=5pt \lineskip=\lineskiplimit
\halign{\hfil#\hfil&\hfil$\vcenter{\convertMPtoPDF{#}{1}{1}}$\hfil\cr
$C_6$&uniaxial.1\cr
$C_{6h}$&uniaxial.2\cr
$C_{6v}$&uniaxial.3\cr
$D_6$&uniaxial.4\cr
$D_{6h}$&uniaxial.5\cr
$D_{6d}$&uniaxial.6\cr
$S_6$&uniaxial.7\cr
}
}
\bye
许可协议
我,本作品著作权人,特此采用以下许可协议发表本作品:
已授权您依据自由软件基金会发行的无固定段落及封面封底文字(Invariant Sections, Front-Cover Texts, and Back-Cover Texts)的GNU自由文件许可协议1.2版或任意后续版本的条款,复制、传播和/或修改本文件。该协议的副本请见“GNU Free Documentation License”。http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
本文件采用知识共享署名-相同方式共享 3.0 未本地化版本许可协议授权。 | ||
| ||
本许可协议标签作为GFDL许可协议更新的组成部分被添加至本文件。http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue |
- 您可以自由地:
- 共享 – 复制、发行并传播本作品
- 修改 – 改编作品
- 惟须遵守下列条件:
- 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
- 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
您可以选择您需要的许可协议。
此文件中描述的项目
描绘内容
文件历史
点击某个日期/时间查看对应时刻的文件。
日期/时间 | 缩略图 | 大小 | 用户 | 备注 | |
---|---|---|---|---|---|
当前 | 2006年7月5日 (三) 08:28 | 800 × 2,000(26 KB) | AndrewKepert~commonswiki | Author: user:en:AndrewKepert Toolchain: MetaPost and TeX. Source: will be uploaded Description: Illustration of a typical member of each of 7 infinite families of 3D point groups. Destination: en:Point groups in three dimensions. Permission: GF |
文件用途
以下页面使用本文件:
全域文件用途
以下其他wiki使用此文件:
- en.wikipedia.org上的用途
- es.wikipedia.org上的用途
- id.wikipedia.org上的用途
- nl.wikipedia.org上的用途
- ru.wikipedia.org上的用途