元因数
此条目需要扩充。 (2013年2月14日) |
在数学上,元因数(unitary divisor)是指一种特殊的因数。若一整数a是另一整数b的因数,且a和互质,则整数a为整数b的元因数。
以60为例,5和互质,因此5是整数60的元因数,而6和不互质,因此6不是整数60的元因数,1是所有数字的元因数。
一整数b的因数a为其元因数的充份必要条件是a的每一个质因数,其乘幂次数都和该质因数在b出现的次数一様。若整数b为无平方数因数的数,其所有因数均为元因数。
一个整数元因数的和表示为σ*(n)。元因数k次方的和表示为σ*k(n):
若一个整数真元因数(小于整数的元因数)的和为整数本身,此整数称为元完全数。
外部链接
- 埃里克·韦斯坦因. Unitary Divisor. MathWorld.
- OEIS sequences: A034444 is σ0(n). A034448 is σ1(n). A034676 up to A034682 are σ2(n) to σ8(n).
A068068 is σ(o)*0(n). A192066 is σ(o)*1(n).
这是一篇关于数论的小作品。您可以通过编辑或修订扩充其内容。 |