File:Unraveling Saturn's Rings.jpg

原始檔案 (3,200 × 2,400 像素,檔案大小:649 KB,MIME 類型:image/jpeg


摘要

描述
English: In this simulated image of Saturn's rings, color is used to present information about ring particle sizes in different regions based on the measured attenuations of three radio signals.

Specially designed Cassini orbits place Earth and Cassini on opposite sides of Saturn's rings, a geometry known as occultation. Cassini conducted the first radio occultation observation of Saturn's rings on May 3, 2005.

Three simultaneous radio signals of 0.94, 3.6, and 13 centimeter wavelength (Ka-, X-, and S-bands) were sent from Cassini through the rings to Earth. The observed change of each signal as Cassini moved behind the rings provided a profile of the distribution of ring material as a function of distance from Saturn, or an optical depth profile. This simulated image was constructed from the measured optical depth profiles. It depicts the observed ring structure at a resolution of about 10 kilometers (6 miles).

Shades of purple, primarily over most of the middle ring, the B ring, and the inner portion of the outer ring, the A ring, indicate regions where there is a lack of particles less than 5 centimeters (about 2 inches) in diameter. Green and blue shades indicate regions where there are particles of sizes smaller than 5 centimeters (2 inches) and 1 centimeter (less than one third of an inch), respectively, primarily in the outer A ring and within most of the inner ring, the C ring. The saturated broad white band near the middle of the B ring is the densest region of the rings, over which two of the three radio signals were blocked at 10-kilometer (6-mile) resolution, preventing accurate color representation. From other evidence in the radio observations, all ring regions appear to be populated by a broad range particle size distribution that extends to boulder sizes (several to many meters across).

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter was designed, developed and assembled at JPL. The radio science team is based at JPL.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov. For more information on the radio science team visit http://saturn.jpl.nasa.gov/spacecraft/instruments-cassini-rss.cfm.
日期 Radio data acquired 2005-05-03; image released 2005-05-23
來源 http://photojournal.jpl.nasa.gov/catalog/?IDNumber=PIA07873
作者 NASA / JPL
其他版本

授權條款

Public domain 本作品由NASA創作,屬於公有領域。根據NASA的版權政策:“NASA的創作除非另有聲明否則不受版權保護。”(參見:Template:PD-USGov/zhNASA版權政策JPL圖像使用政策
警告:

說明

添加單行說明來描述出檔案所代表的內容

在此檔案描寫的項目

描繪內容

檔案歷史

點選日期/時間以檢視該時間的檔案版本。

日期/時間縮⁠圖尺寸使用者備⁠註
目前2009年8月12日 (三) 14:50於 2009年8月12日 (三) 14:50 版本的縮圖3,200 × 2,400(649 KB)Originalwana{{Information |Description={{en|1=In this simulated image of Saturn's rings, colour is used to present information about ring particle sizes in different regions based on the measured effects of three radio signals. Three simultaneous radio signals of 0.9

下列頁面有用到此檔案:

全域檔案使用狀況

以下其他 wiki 使用了這個檔案:

詮釋資料