NNPDF
此條目需要精通或熟悉物理的編者參與及協助編輯。 |
NNPDF是用於識別部分子分佈函數(英語:parton distribution functions)的首字母縮寫詞。
開發者 | The NNPDF Collaboration |
---|---|
當前版本 | 3.1 |
類型 | 粒子物理 |
網站 | nnpdf |
已隱藏部分未翻譯內容,歡迎參與翻譯。
NNPDF is the acronym used to identify the parton distribution functions from the NNPDF Collaboration. NNPDF parton densities are extracted from global fits to data based on a combination of a Monte Carlo method for uncertainty estimation and the use of neural networks as basic interpolating functions.
Methodology
NNPDF途徑可以分為四個主要步驟:
- The generation of a large sample of Monte Carlo replicas of the original experimental data, in a way that central values, errors and correlations are reproduced with enough accuracy.
- The training (minimization of the ) of a set of PDFs parametrized by neural networks on each of the above MC replicas of the data. PDFs are parametrized at the initial evolution scale and then evolved to the experimental data scale by means of the DGLAP equations. Since the PDF parametrization is redundant, the minimization strategy is based in genetic algorithms as well as gradient descent based minimizers.
- The neural network training is stopped dynamically before entering into the overlearning regime, that is, so that the PDFs learn the physical laws which underlie experimental data without fitting simultaneously statistical noise.
- Once the training of the MC replicas has been completed, a set of statistical estimators can be applied to the set of PDFs, in order to assess the statistical consistency of the results. For example, the stability with respect PDF parametrization can be explicitly verified.
The set of PDF sets (trained neural networks) provides a representation of the underlying PDF probability density, from which any statistical estimator can be computed.
示例
-
NNPDF1.0 膠子
版本
NNPDF各版本:
PDF set | DIS 數據 | Drell-Yan 數據 | Jet 數據 | LHC 數據 | 獨立 和 參數 | 重夸克質量 | NNLO |
---|---|---|---|---|---|---|---|
NNPDF3.1 (頁面存檔備份,存於網際網路檔案館) | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
NNPDF3.0 (頁面存檔備份,存於網際網路檔案館) | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
NNPDF2.3 (頁面存檔備份,存於網際網路檔案館) | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
NNPDF2.2 (頁面存檔備份,存於網際網路檔案館) | 是 | 是 | 是 | 是 | 是 | 是 | 是 |
NNPDF2.1 (頁面存檔備份,存於網際網路檔案館) | 是 | 是 | 是 | 否 | 是 | 是 | 是 |
NNPDF2.0 (頁面存檔備份,存於網際網路檔案館) | 是 | 是 | 是 | 否 | 是 | 否 | 否 |
NNPDF1.2 (頁面存檔備份,存於網際網路檔案館) | 是 | 否 | 否 | 否 | 是 | 否 | 否 |
NNPDF1.0 (頁面存檔備份,存於網際網路檔案館) | 是 | 否 | 否 | 否 | 否 | 否 | 否 |
外部鏈接
- The NNPDF Collaboration 主頁 (頁面存檔備份,存於網際網路檔案館)
- Download NNPDF Parton Distribution sets[失效連結]
- The NNPDF1.0 analysis (頁面存檔備份,存於網際網路檔案館)
- The NNPDF Non-Singlet analysis (頁面存檔備份,存於網際網路檔案館)
- NNPDF3.1 release (頁面存檔備份,存於網際網路檔案館)
- NNPDF latest fitting code (頁面存檔備份,存於網際網路檔案館)
- The LHAPDF interface (頁面存檔備份,存於網際網路檔案館)