這是維基百科使用者頁面 此頁面不是百科全書條目,也不是條目的討論頁面。 若您在中文維基百科(網域名稱為zh.wikipedia.org)之外的網站看到此頁面,那麼您可能正在瀏覽一個鏡像網站。 請注意:鏡像網站中的頁面可能已經過時,且頁面中涉及的使用者可能與該鏡像網站沒有任何關係。 若欲造訪原始頁面,請點擊這裡。 |
學業為重,Hello World I'm Dad由於課業因素,正在放一段維基假期,預定會在心情愉快之後回來。 在這期間,Hello World I'm Dad仍可能會時常小幅編輯一下,但給Hello World I'm Dad的留言可能無法很快得到回覆。 |
未來
|
記事
|
觀點
|
喜好
|
一般
|
語言
|
快速連結
下載量農場
廣告堆疊
Click Spam
Click Injection
應用程式內事件
規避技術
SDK spoofing
由於已知的技術原因,圖表暫時不可用。帶來不便,我們深表歉意。 |
簽名區
testHello World I'm Dad(留言) 2019年8月13日 (二) 13:32 (UTC)
朋友你好,很高興認識你!--向史公哲曰(留言) 2024年8月14日 (三) 16:16 (UTC)
點擊欺詐
此條目可參照外語維基百科相應條目來擴充。 |
每點擊付費模式 |
Pay-per-click advertisingMain article: Pay-per-click PPC advertising is an arrangement in which webmasters (operators of websites), acting as publishers, display clickable links from advertisers in exchange for a charge per click. As this industry evolved, a number of advertising networks developed, which acted as middlemen between these two groups (publishers and advertisers). Each time a (believed to be) valid Web user clicks on an ad, the advertiser pays the advertising network, which in turn pays the publisher a share of this money. This revenue-sharing system is seen as an incentive for click fraud. The largest of the advertising networks, Google's AdWords/AdSense and Yahoo! Search Marketing, act in a dual role, since they are also publishers themselves (on their search engines).[2] According to critics, this complex relationship may create a conflict of interest. This is because these companies lose money to undetected click fraud when paying out to the publisher but make more money when collecting fees from the advertiser. Because of the spread between what they collect and pay out, unfettered click fraud would create short-term profits for these companies.[citation needed] |
組織性點擊欺詐除了平台主個人的點擊欺詐案件之外,許多大規模點擊欺詐也正在發生。[2]想從事大規模點擊欺詐的人通常會使用模擬人類行為的自動程式去點擊網頁上的廣告[3],然而這些點擊看起來都像是來自同一個人、少量的電腦或是同一個地區,對於廣告主和廣告網路來說會十分可疑,若想從事大規模點擊欺詐,只有一台電腦的話會很容易被發現。 一種規避透過IP特徵偵測點擊欺詐的機制的方法是將現有的用戶流量轉換成點擊和曝光(impression)。[4]欺詐者可以透過放置十分微小且一直重新載入的廣告以達到對用戶偽裝的效果,並且和廣告主保證所謂的「網頁爬蟲」瀏覽的都是正常的網頁,而呈給用戶點擊欺詐用的網頁。 細小廣告以及其他利用用戶的技術還能與透過獎勵製造的流量併用,像是「有償閱讀」(Paid to Read)網站的會員在瀏覽網站或點擊關鍵字的時候能得到少量的錢,[5]而有些有償閱讀網站的管理者也是每點擊付費的會員,他們可能會給經常搜尋的人寄特別多的廣告郵件,因為關鍵字的每點擊付費常常是網站的唯一收入。這被稱為強迫搜尋,是一個在線上有償購買用戶行為的產業中不被贊同的行為。 組織性的點擊欺詐可以透過使用非常多的電腦組成犯罪網路從而 使虛假流量的來源顯示在許多位置。由於自動程式仍然無法完全模擬用戶行為,點擊欺詐網路可能會透過感染他人組成殭屍網路或是域名伺服器快取汙染等方法使得一般用戶在不知情的情況下為他們製造收入。廣告主、廣告網路以及警察將會十分難以追查散布在各個國家的點擊欺詐網路。 曝光數欺詐是被用於拉低對手的廣告排序,當競爭對手的廣告點擊率過低的時候,他們就有可能受到懲罰,廣告可能會遭到替換,使得出價較低的廣告得以被換上。[6]
|
OrganizationClick fraud can be as simple as one person starting a small Web site, becoming a publisher of ads, and clicking on those ads to generate revenue. Often the number of clicks and their value is so small that the fraud goes undetected. Publishers may claim that small amounts of such clicking is an accident, which is often the case.[citation needed] Much larger-scale fraud also occurs.[3] Those engaged in large-scale fraud will often run scripts which simulate a human clicking on ads in Web pages.[4] However, huge numbers of clicks appearing to come from just one, or a small number of computers, or a single geographic area, look highly suspicious to the advertising network and advertisers. Clicks coming from a computer known to be that of a publisher also look suspicious to those watching for click fraud. A person attempting large-scale fraud, from one computer, stands a good chance of being caught. One type of fraud that circumvents detection based on IP patterns uses existing user traffic, turning this into clicks or impressions.[5] Such an attack can be camouflaged from users by using 0-size iframes to display advertisements that are programmatically retrieved using JavaScript. It could also be camouflaged from advertisers and portals by ensuring that so-called "reverse spiders" are presented with a legitimate page, while human visitors are presented with a page that commits click fraud. The use of 0-size iframes and other techniques involving human visitors may also be combined with the use of incentivized traffic, where members of "Paid to Read" (PTR) sites are paid small amounts of money (often a fraction of a cent) to visit a website and/or click on keywords and search results, sometimes hundreds or thousands of times every day[6] Some owners of PTR sites are members of PPC engines and may send many email ads to users who do search, while sending few ads to those who do not. They do this mainly because the charge per click on search results is often the only source of revenue to the site. This is known as forced searching, a practice that is frowned upon in the Get Paid To industry. Organized crime can handle this by having many computers with their own Internet connections in different geographic locations. Often, scripts fail to mimic true human behavior, so organized crime networks use Trojan code to turn the average person's machines into zombie computers and use sporadic redirects or DNS cache poisoning to turn the oblivious user's actions into actions generating revenue for the scammer. It can be difficult for advertisers, advertising networks, and authorities to pursue cases against networks of people spread around multiple countries. Impression fraud is when falsely generated ad impressions affect an advertiser's account. In the case of click-through rate based auction models, the advertiser may be penalized for having an unacceptably low click-through for a given keyword. This involves making numerous searches for a keyword without clicking of the ad. Such ads are disabled[7] automatically, enabling a competitor's lower-bid ad for the same keyword to continue, while several high bidders (on the first page of the search results) have been eliminated. Hit inflation attackA hit inflation attack is a kind of fraudulent method used by some advertisement publishers to earn unjustified revenue on the traffic they drive to the advertisers』 Web sites. It is more sophisticated and harder to detect than a simple inflation attack. This process involves the collaboration of two counterparts, a dishonest publisher, P, and a dishonest Web site, S. Web pages on S contain a script that redirects the customer to P's Web site, and this process is hidden from the customer. So, when user U retrieves a page on S, it would simulate a click or request to a page on P's site. P's site has two kinds of webpages: a manipulated version, and an original version. The manipulated version simulates a click or request to the advertisement, causing P to be credited for the click-through. P selectively determines whether to load the manipulated (and thus fraudulent) script to U's browser by checking if it was from S. This can be done through the Referrer field, which specifies the site from which the link to P was obtained. All requests from S will be loaded with the manipulated script, and thus the automatic and hidden request will be sent.[8] This attack will silently convert every innocent visit to S to a click on the advertisement on P's page. Even worse, P can be in collaboration with several dishonest Web sites, each of which can be in collaboration with several dishonest publishers. If the advertisement commissioner visits the Web site of P, the non-fraudulent page will be displayed, and thus P cannot be accused of being fraudulent. Without a reason for suspecting that such collaboration exists, the advertisement commissioner has to inspect all the Internet sites to detect such attacks, which is infeasible.[8] Another proposed method for detection of this type of fraud is through use of association rules.[9] |
操縱有機搜尋結果影響一個網頁在有機搜尋中的排名的一個重要因素就是點擊率,計算方法是將點擊數除以曝光數,或者說將一個搜尋結果被點擊的次數除以搜尋結果被展示的次數。 和每點擊付費欺詐相反,當你的競爭對手正在購買殭屍網路服務或是低價勞力以產生虛假點擊時,點擊率欺詐的目的就是將競爭對手的點擊率降低,從而不斷地降低他們的網站在搜尋引擎最佳化中的排名。 更壞的點擊率欺詐者或許還會在削弱對手的同時提升自己網站的排名,或是他的政治立場等。我們對於這個問題上演的規模還不清楚,但很明顯有許多網站開發者都很在意網站在分析工具上的指標。 |
Manipulation of organic search resultsOne major factor that affects the ranking of websites in organic search results is the CTR (Click-through Rate). That is the ratio of clicks to impressions, or in other words how many times a search result is clicked on, as compared to the number of times the listing appears in search results. In contrast to PPC fraud, where a competitor leverages the services of a botnet, or low cost labour, to generate false clicks, in this case the objective is to beggar thy competitor by making their CTR rate as low as possible, thereby diminishing their ranking factor (position from the top of search results). Bad actors will therefore generate false clicks on organic search results that they wish to promote, while avoiding search results they wish to demote. This technique can effectively create a cartel of business services controlled by the same bad actor, or be used to promote a certain political opinion etc. The scale of this issue is unknown, but is certainly evident to many website developers who pay close attention to the statistics in webmaster tools. |
法律案件[10][11][12][13][14][15][16][17][18][19][20][21]
|
Legal casesLawsuits
Michael Anthony BradleyIn 2004, California resident Michael Anthony Bradley created Google Clique, a software program that he claimed could let spammers defraud Google out of millions of dollars in fraudulent clicks, which ultimately led to his arrest and indictment.[17] Bradley used technology that he created for his other companies that took him five years to develop. Using this technology, he was able to demonstrate that fraud was possible, and was impossible for Google to detect. Bradley notified Google of this security flaw, and was willing to work with them to close up some of these holes. However, Bradley was offered $500,000 for his software and technology by some of the world's top spammers. With this information, Bradley thought he could put a price of $100,000 on his technology, and offered to sell Google all rights to his technology, and they could make the Internet a better and safer place. When Bradley showed up to Google's offices, he demonstrated the software for them, and when they asked what he wanted, he had stated that he would consult for free if they wanted to purchase the rights to his technology. He explained the prior offer of $500,000 and said he knew he could get it, but would settle for $100,000 if they wanted to work together. Bradley returned to Google's offices and was met by United States Secret Service officers who were undercover. They kept asking him what he wanted, and they even pushed a check for $100,000 to him. Bradley stated that this felt like blackmail and was not comfortable with this, and pushed the money away. Just then the Secret Service came in and arrested him. Authorities said he was arrested while trying to extort $100,000 from Google in exchange for handing over the program.[18] Charges were dropped without explanation on November 22, 2006; both the US Attorney's office and Google declined to comment. Business Week suggests that Google was unwilling to cooperate with the prosecution, as it would be forced to disclose its click fraud detection techniques publicly.[19] Fabio GasperiniOn June 18, 2016, Fabio Gasperini, an Italian citizen, was extradited to the United States on click fraud charges.[20] An indictment charged Gasperini with:
According to the U.S. government, Gasperini set up and operated a botnet of over 140,000 computers around the world. This was the first click fraud trial in the United States. If convicted of all counts, Gasperini risked up to 70 years in jail. Simone Bertollini, an Italian-American lawyer, represented Gasperini at trial. On August 9, 2017 a jury acquitted Gasperini of all the felony charges of the indictment. Gasperini was convicted of one misdemeanor count of obtaining information without a financial gain. Gasperini was sentenced to the statutory maximum of one year imprisonment, a $100,000 fine, and one year of supervised release following incarceration. Shortly after he was credited with time served and sent back to Italy. An appeal is currently pending.[21] |
應對方案
|
SolutionsProving click fraud can be very difficult, since it is hard to know who is behind a computer and what their intentions are. When it comes to mobile ad fraud detection, data analysis can give some reliable indications. It is important to understand that abnormal metrics can hint at the presence of different types of frauds. To detect click fraud in ad campaign, advertisers can focus on the following attribution points:
Often the best an advertising network can do is to identify which clicks are most likely fraudulent and not charge the account of the advertiser. Even more sophisticated means of detection are used,[22] but none are foolproof. The Tuzhilin Report[23] produced as part of a click fraud lawsuit settlement, has a detailed and comprehensive discussion of these issues. In particular, it defines "the Fundamental Problem of invalid (fraudulent) clicks":
The PPC industry is lobbying for tighter laws on the issue. Many hope to have laws that will cover those not bound by contracts. A number of companies are developing viable solutions for click fraud identification and are developing intermediary relationships with advertising networks. Such solutions fall into two categories:
In a 2007 interview in Forbes, Google click fraud czar Shuman Ghosemajumder said that one of the key challenges in click fraud detection by third-parties was access to data beyond clicks, notably, ad impression data.[24] Click fraud is less likely in cost per action models. |
研究
|
ResearchThe fact that the middlemen (search engines) have the upper hand in the operational definition of invalid clicks is the reason for the conflict of interest between advertisers and the middlemen, as described above. This is manifested in the Tuzhilin Report[23] as described above. The Tuzhilin report did not publicly define invalid clicks and did not describe the operational definitions in detail. Rather, it gave a high-level picture of the fraud-detection system and argued that the operational definition of the search engine under investigations is "reasonable". One aim of the report was to preserve the privacy of the fraud-detection system in order to maintain its effectiveness. This prompted some researchers to conduct public research on how the middlemen can fight click fraud.[25] Since such research is presumably not tainted by market forces, there is hope that this research can be adopted to assess how rigorous a middleman is in detecting click fraud in future law cases. The fear that this research can expose the internal fraud-detection system of middlemen still applies. An example of such research is that done by Metwally, Agrawal and El Abbadi at UCSB. Other work by Majumdar, Kulkarni, and Ravishankar at UC Riverside proposes protocols for the identification of fraudulent behavior by brokers and other intermediaries in content-delivery networks. |
熱圖
種類
|
TypesThere are different kinds of heat maps:
|
配色 |
Color schemesMany different color schemes can be used to illustrate the heat map, with perceptual advantages and disadvantages for each. Rainbow color maps are often used, as humans can perceive more shades of color than they can of gray, and this would purportedly increase the amount of detail perceivable in the image. However, this is discouraged by many in the scientific community, for the following reasons:[29][30][31][32][33]
|
與等值線圖的比較 |
Choropleth maps vis-à-vis heat mapsChoropleth maps are sometimes incorrectly referred to as heat maps. A choropleth map features different shading or patterns within geographic boundaries to show the proportion of a variable of interest, whereas the coloration a heat map (in a map context) does not correspond to geographic boundaries.[34] |
實際軟體應用 |
Software implementationsSeveral heat map software implementations are freely available:
|
圖例 |
|
- ^ Asdemir, Kursad; Yurtseven, Özden; Yahya, Mon. An Economic Model of Click Fraud in Publisher Networks. 2008.
- ^ Schonfeld, Erick; The Evolution Of Click Fraud: Massive Chinese Operation DormRing1 Uncovered". TechCrunch. October 8, 2009.
- ^ Badhe, Anup. Click Fraud Detection in mobile ads served in programmatic exchanges (PDF). International Journal of Scientific & Technology Research. April 2016, 05: 1.
- ^ Gandhi, Mona; Jakobsson, Markus; Ratkiewicz, Jacob;Badvertisements: Stealthy Click-Fraud with Unwitting Accessories 網際網路檔案館的存檔,存檔日期2016-03-04.", APWG eFraud conference, 2006
- ^ V. Anupam; A. Mayer; K. Nissim; B. Pinkas; M. Reiter. On the Security of Pay-Per-Click and Other Web Advertising Schemes. In Proceedings of the 8th WWW International World Wide Web Conference (PDF). Unizh.co: 1091–1100. 1999.
- ^ A. Metwally; D. Agrawal; A. El Abbadi. Using Association Rules for Fraud Detection in Web Advertising Networks. In Proceedings of the 10th ICDT International Conference on Database Theory (PDF): 398–412. 2005. An extended version appeared in a University of California, Santa Barbara, Department of Computer Science, technical report 2005-23.
- ^ Grow, Bryan; Elgin, Ben; with Herbst, Moira. Click Fraud: The dark side of online advertising. BusinessWeek. October 2, 2006.
- ^ Botnets strangle Google Adwords campaigns, Keyword Hijacking Risk. The Register. [2005-02-04].
- ^ V. Anupam; A. Mayer; K. Nissim; B. Pinkas; M. Reiter. On the Security of Pay-Per-Click and Other Web Advertising Schemes. In Proceedings of the 8th WWW International World Wide Web Conference (PDF). Unizh.co: 1091–1100. 1999.
- ^ Davis, Wendy; "Google Wins $75,000 in Click Fraud Case" 網際網路檔案館的存檔,存檔日期2009-01-22.. Media Post July 5, 2005.
- ^ Ryan, Kevin M. Big Yahoo Click Fraud Settlemen. iMedia Connection. July 5, 2006.
- ^ Wong, Nicole; "Update Lanes Gifts v. Google". Google Blog, March 8, 2006
- ^ Griffin, Joe E. Lanes v. Google Final Order (PDF). Googleblog.blogsport.com. July 27, 2006.
- ^ Sullivan, Danny;"Google Agrees To $90 Million Settlement In Class Action Lawsuit Over Click Fraud" 網際網路檔案館的存檔,存檔日期2007-11-22.. March 8, 2006
- ^ Court Docket For: Lane's Gifts and Collectibles, L.L.C. et al. v. Yahoo! Inc., et al.. Docket Alarm, Inc. [6 August 2013].
- ^ Stricchiola, Jessie. Lost Per Click. Search Engine Watch. July 28, 2004.
- ^ Criminal Docket for: USA v. Bradley, 5:04-cr-20108 (N.D.Cal.). Docket Alarm, Inc. [6 August 2013].
- ^ US Department of Justice; "Computer Programmer Arrested for Extortion and Mail Fraud Scheme Targeting Google, Inc." 網際網路檔案館的存檔,存檔日期2006-10-01.. March 18, 2004
- ^ Elgin, Ben; "The Vanishing Click Fraud Case". Business Week. December 4, 2006
- ^ Cybercriminal Who Created Global Botnet Infected With Malicious Software Extradited To Face Click Fraud Charges. www.justice.gov. [2017-11-21] (英語).
- ^ Cybercriminal Convicted of Computer Hacking and Sentenced to Statutory Maximum. www.justice.gov. [2017-11-21] (英語).
- ^ Ghosemajumder, Shuman; "Using data to help prevent fraud". March 18, 2008
- ^ Tuzhilin, Alexander; The Lane's Gifts v. Google Report, by Alexander Tuzhilin. July, 2006
- ^ Greenberg, Andy; "Counting Clicks". Forbes. September 14, 2007
- ^ Tuzhilin, Alexander; The Lane's Gifts v. Google Report, by Alexander Tuzhilin. July, 2006
- ^ Jansen, B. J. (2007) Click fraud. IEEE Computer. 40(7), 85-86.
- ^ MH370 – Definition of Underwater Search Areas (PDF) (報告). Australian Transport Safety Bureau. 3 December 2015.
- ^ Perrot, A.; Bourqui, R.; Hanusse, N.; Lalanne, F.; Auber, D. Large interactive visualization of density functions on big data infrastructure. 2015: 99–106. ISBN 978-1-4673-8517-6. doi:10.1109/LDAV.2015.7348077 (英語).
|journal=
被忽略 (幫助) - ^ 29.0 29.1 29.2 29.3 Borland, David; Taylor, Russell. Rainbow Color Map (Still) Considered Harmful. IEEE Computer Graphics and Applications. 2007, 27 (2): 14–7. PMID 17388198. doi:10.1109/MCG.2007.323435.
- ^ How NOT to Lie with Visualization – Bernice E. Rogowitz and Lloyd A. Treinish – IBM Thomas J. Watson Research Center, Yorktown Heights, NY
- ^ Harrower, Mark; Brewer, Cynthia A. ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps. Dodge, Martin; Kitchin, Rob; Perkins, Chris (編). The Cartographic Journal. 2003: 27–37. ISBN 978-0-470-98007-1. doi:10.1179/000870403235002042.
- ^ Green, D. A. A colour scheme for the display of astronomical intensity images. Bulletin of the Astronomical Society of India. 2011, 39: 289–95. Bibcode:2011BASI...39..289G. arXiv:1108.5083 .
- ^ 33.0 33.1 Borkin, M.; Gajos, K.; Peters, A.; Mitsouras, D.; Melchionna, S.; Rybicki, F.; Feldman, C.; Pfister, H. Evaluation of Artery Visualizations for Heart Disease Diagnosis. IEEE Transactions on Visualization and Computer Graphics. 2011, 17 (12): 2479–88. CiteSeerX 10.1.1.309.590 . PMID 22034369. doi:10.1109/TVCG.2011.192.
- ^ Choropleth vs. Heat Map –. www.gretchenpeterson.com.
- ^ Using R to draw a heat map from Microarray Data. Molecular Organisation and Assembly in Cells. 26 Nov 2009.
- ^ Draw a Heat Map. R Manual.
- ^ Galili, Tal; O'Callaghan, Alan; Sidi, Jonathan; Sievert, Carson. heatmaply: an R package for creating interactive cluster heat maps for online publishing. Bioinformatics. 2017, ? (?): 1600–1602. PMC 5925766 . PMID 29069305. doi:10.1093/bioinformatics/btx657.
- ^ http://gnuplot.sourceforge.net/demo_4.4/heatmaps.html[需要完整來源]
- ^ Fusion Tables Help - Create a heat map. Jan 2018. support.google.com
- ^ http://www.mrao.cam.ac.uk/~dag/CUBEHELIX/[需要完整來源]
- ^ ol/layer/Heatmap~Heatmap. OpenLayers. [2019-01-01].
- ^ https://www.highcharts.com/demo#heat-and-tree-maps[需要完整來源]