互穿聚合物網絡

互穿聚合物網絡 (Interpenetrating polymer network, IPN) 是一種由兩個以上網絡的聚合物部分交錯,但彼此沒有共價鍵結的網絡。除非化學鍵被打破,否則網絡無法分離。網絡可以想像成纏結在一起,無法拉開,但彼此之間沒有任何化學鍵結合。[1]

氰化鎘(Cd(CN)2)的結構,突顯互穿結構。藍色是一個Cd(CN)2子結構,紅色是另一個Cd(CN)2子結構。
IUPAC definition
Interpenetrating polymer network (IPN): A polymer comprising two
or more networks which are at least partially interlaced on a molecular scale
but not covalently bonded to each other and cannot be separated unless chemical
bonds are broken.

Note: A mixture of two or more pre-formed polymer networks is not an IPN.[2]

Semi-interpenetrating polymer network (SIPN): A polymer comprising one or
more networks and one or more linear or branched polymer(s) characterized by the
penetration on a molecular scale of at least one of the networks by at least some
of the linear or branched macromolecules.

Note: Semi-interpenetrating polymer networks are distinguished from
interpenetrating polymer networks because the constituent linear or branched
polymers can, in principle, be separated from the constituent polymer network(s)
without breaking chemical bonds; they are polymer blends.[3]

Sequential interpenetrating polymer network: Interpenetrating polymer network
prepared by a process in which the second component network is formed
following the formation of the first component network.[4]

Sequential semi-interpenetrating polymer network: Semi-interpenetrating
polymer network
prepared by a process in which the linear or branched
components are formed following the completion of the reactions that lead to
the formation of the network(s) or vice versa.[5]

簡單地混合兩種或多種聚合物不會產生互穿聚合物網絡(聚合物共混物),也不會由一種以上的單體相互結合形成一個網絡(異質聚合物共聚物)來創建聚合物網絡。

僅將兩種或兩種以上的聚合物混合並不能產生互相穿透的聚合物網絡 (聚合物共混物),也不是由一種以上的單體互相結合所組成的聚合物網絡 (異質聚合物或共聚物)。

除了互穿聚合物網絡,還有半互穿聚合物網絡(semi-interpenetrating polymer networks,SIPN )[6]和偽互穿聚合物網絡(pseudo-interpenetrating polymer networks)。[7]

製備IPN和SIPN,可通過不同組分同時形成[8][9]或依次形成。[10][11]

歷史

第一個已知的互穿聚合物網絡是1914年由喬納斯·艾爾斯沃思(Jonas Aylsworth)製造的酚醛樹脂與硫化天然橡膠的組合。[12]然而,這是在斯陶丁格提出大分子假說之前,因此當時尚未使用「聚合物」或「IPN」這些術語。1960年,J.R. Millar首次在討論磺化和未磺化的苯乙烯-二乙烯基苯共聚物網絡時引入了「互穿聚合物網絡」這一術語。[13]

機械性能

分子間的混合往往會使某些互穿聚合物網絡材料的玻璃化轉變區域比其組分聚合物更寬。由於具有相對恆定且較高的相位角,這一獨特特性使得IPN材料在寬溫度和頻率範圍內表現出優異的機械阻尼性能。[14]在由橡膠狀和玻璃狀聚合物組成的IPN中,與其組成的聚合物相比,可以觀察到顯著的增韌效果。當玻璃狀成分形成離散的、不連續的相時,連續橡膠狀相的彈性本質能夠得到保持,同時增加了材料的整體韌性和斷裂伸長率。另一方面,當玻璃狀聚合物在橡膠狀網絡中形成雙連續相時,IPN材料則可能表現為抗衝擊塑料。[15]

形態學

大多數互穿聚合物網絡(IPN)在分子尺度上並沒有完全互穿,而是形成了小的分散相或雙連續相形態,其特徵長度約為幾十納米。[12]然而,由於這些長度尺度相對較小,通常在宏觀尺度上被認為是均勻的。這些結構域的特徵長度通常與交聯點之間的鏈長相關,因此相的形態往往由組分網絡的交聯密度決定。IPN中的相分離動力學可以由成核生長以及Spinodal分解始發形成調幅組織的強化機制引發,前者會生成類似分散球體的離散相,而後者則會形成類似互連圓柱體的雙連續相。[16]與許多典型的相分離過程相反,由於任一網絡中交聯點的形成,粗化過程(即相的長度尺度隨着時間的推移而增大)可能會受到阻礙。[12]此外,與簡單的聚合物共混物相比,IPN通常能夠在較長時間內保持這些複雜的形態。[17]

應用

互穿聚合物網絡已被用於汽車零部件(包括現代汽車烤漆)、阻尼材料、醫療設備、模塑料和工程塑料中。[14]雖然IPN材料的增強機械性能帶來了許多好處,但諸如抗溶劑膨脹等其他特性也使得IPN成為具有商業價值的材料。[14]近年來,IPN的應用和研究領域還包括藥物輸送系統、能量存儲材料和組織工程等。[18]

參考

  1. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "interpenetrating polymer network"。doi:10.1351/goldbook.I03117
  2. ^ Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996) (PDF). Pure and Applied Chemistry. 1996, 68 (12): 2287–2311 [2013-07-25]. S2CID 98774337. doi:10.1351/pac199668122287. (原始內容 (PDF)存檔於2016-03-04). 
  3. ^ Jenkins, A. D.; Kratochvíl, P.; Stepto, R. F. T.; Suter, U. W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996) (PDF). Pure and Applied Chemistry. 1996, 68 (12): 2287–2311 [2013-07-25]. S2CID 98774337. doi:10.1351/pac199668122287. (原始內容 (PDF)存檔於2016-03-04). 
  4. ^ Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic–organic hybrid materials (IUPAC Recommendations 2007) (PDF). Pure and Applied Chemistry. 2007, 79 (10): 1801–1829 [2013-07-25]. S2CID 97620232. doi:10.1351/pac200779101801. (原始內容 (PDF)存檔於2014-02-11). 
  5. ^ Alemán, J. V.; Chadwick, A. V.; He, J.; Hess, M.; Horie, K.; Jones, R. G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R. F. T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic–organic hybrid materials (IUPAC Recommendations 2007) (PDF). Pure and Applied Chemistry. 2007, 79 (10): 1801–1829 [2013-07-25]. S2CID 97620232. doi:10.1351/pac200779101801. (原始內容 (PDF)存檔於2014-02-11). 
  6. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "semi-interpenetrating polymer network"。doi:10.1351/goldbook.S05598
  7. ^ Sperling, L.H., J. Polymer Sci.
  8. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "simultaneous interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  9. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "simultaneous semi-interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  10. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "sequential interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  11. ^ 國際純化學和應用化學聯合會化學術語概略,第二版。(金皮書)(1997)。在線校正版: (2006–) "sequential semi-interpenetrating polymer network"。doi:10.1351/goldbook.{{{file}}}Error in template * mandatory parameter missing (GoldBookRef): file
  12. ^ 12.0 12.1 12.2 American Chemical Society. Meeting (202nd : 1991 : New York, N.Y.). Interpenetrating polymer networks. Klempner, Daniel., Sperling, L. H. (Leslie Howard), 1932-, Utracki, L. A., 1931-, American Chemical Society. Division of Polymeric Materials: Science and Engineering., Chemical Congress of North America (4th : 1991 : New York, N.Y.). Washington, DC: American Chemical Society. 1994. ISBN 0-8412-2528-1. OCLC 28337384. 
  13. ^ Millar, J. R. 263. Interpenetrating polymer networks. Styrene–divinylbenzene copolymers with two and three interpenetrating networks, and their sulphonates. J. Chem. Soc. 1960: 1311–1317. ISSN 0368-1769. doi:10.1039/JR9600001311 (英語). 
  14. ^ 14.0 14.1 14.2 Sperling, L. H. Interpenetrating polymer networks and related materials. Journal of Polymer Science: Macromolecular Reviews. 1977, 12 (1): 141–180. doi:10.1002/pol.1977.230120103. 
  15. ^ Curtius, A. J.; Covitch, M. J.; Thomas, D. A.; Sperling, L. H. Polybutadiene/polystyrene interpenetrating polymer networks. Polymer Engineering and Science. March 1972, 12 (2): 101–108. ISSN 0032-3888. doi:10.1002/pen.760120205 (英語). 
  16. ^ Donatelli, A. A.; Sperling, L. H.; Thomas, D. A. Interpenetrating Polymer Networks Based on SBR/PS. 1. Control of Morphology by Level of Cross-Linking. Macromolecules. July 1976, 9 (4): 671–675. Bibcode:1976MaMol...9..671D. ISSN 0024-9297. doi:10.1021/ma60052a029 (英語). 
  17. ^ Binder, K.; Frisch, H. L. Phase stability of weakly crosslinked interpenetrating polymer networks. The Journal of Chemical Physics. 1984-08-15, 81 (4): 2126–2136. Bibcode:1984JChPh..81.2126B. ISSN 0021-9606. doi:10.1063/1.447837 (英語). 
  18. ^ Micro- and nano-structured interpenetrating polymer networks : from design to applications. Thomas, Sabu. Hoboken. 2016-03-03. ISBN 978-1-119-13895-2. OCLC 933219019.