泊松分布 (法語:loi de Poisson ;英語:Poisson distribution )又稱Poisson分布 、帕松分布 、布瓦松分布 、布阿松分布 、普阿松分布 、波以松分布 、卜氏分布 、帕松小數法則 (Poisson law of small numbers),是一種統計 與概率 學裡常見到的離散機率分布 ,由法國 數學家 西莫恩·德尼·泊松 在1838年時發表。
泊松分布
概率质量函數
横轴是索引k ,发生次数。该函数只定义在k 为整数的时候。连接线是只为了指导视觉。
累積分布函數
横轴是索引k ,发生次数。CDF在整数k 处不连续,且在其他任何地方都是水平的,因为服从泊松分布的变量只针对整数值。 参数
λ > 0(实数 ) 值域
k
∈
{
0
,
1
,
2
,
3
,
⋯
}
{\displaystyle k\in \{0,1,2,3,\cdots \}}
概率质量函数
λ
k
k
!
e
−
λ
{\displaystyle {\frac {\lambda ^{k}}{k!}}e^{-\lambda }}
累積分布函數
Γ
(
⌊
k
+
1
⌋
,
λ
)
⌊
k
⌋
!
{\displaystyle {\frac {\Gamma (\lfloor k+1\rfloor ,\lambda )}{\lfloor k\rfloor !}}}
,或
e
−
λ
∑
i
=
0
⌊
k
⌋
λ
i
i
!
{\displaystyle e^{-\lambda }\sum _{i=0}^{\lfloor k\rfloor }{\frac {\lambda ^{i}}{i!}}\ }
,或
Q
(
⌊
k
+
1
⌋
,
λ
)
{\displaystyle Q(\lfloor k+1\rfloor ,\lambda )}
(对于
k
≥
0
{\displaystyle k\geq 0}
,其中
Γ
(
x
,
y
)
{\displaystyle \Gamma (x,y)}
是不完全Γ函数 ,
⌊
k
⌋
{\displaystyle \lfloor k\rfloor }
是高斯符号 ,Q是规则化Γ函数) 期望值
λ
{\displaystyle \lambda }
中位數
≈
⌊
λ
+
1
/
3
−
0.02
/
λ
⌋
{\displaystyle \approx \lfloor \lambda +1/3-0.02/\lambda \rfloor }
眾數
⌈
λ
⌉
−
1
,
⌊
λ
⌋
{\displaystyle \lceil \lambda \rceil -1,\lfloor \lambda \rfloor }
方差
λ
{\displaystyle \lambda }
偏度
λ
−
1
/
2
{\displaystyle \lambda ^{-1/2}}
峰度
λ
−
1
{\displaystyle \lambda ^{-1}}
熵
λ
[
1
−
log
(
λ
)
]
+
e
−
λ
∑
k
=
0
∞
λ
k
log
(
k
!
)
k
!
{\displaystyle \lambda [1-\log(\lambda )]+e^{-\lambda }\sum _{k=0}^{\infty }{\frac {\lambda ^{k}\log(k!)}{k!}}}
(假设
λ
{\displaystyle \lambda }
较大)
1
2
log
(
2
π
e
λ
)
−
1
12
λ
−
1
24
λ
2
−
{\displaystyle {\frac {1}{2}}\log(2\pi e\lambda )-{\frac {1}{12\lambda }}-{\frac {1}{24\lambda ^{2}}}-}
19
360
λ
3
+
O
(
1
λ
4
)
{\displaystyle \qquad {\frac {19}{360\lambda ^{3}}}+O\left({\frac {1}{\lambda ^{4}}}\right)}
矩生成函数
exp
(
λ
(
e
t
−
1
)
)
{\displaystyle \exp(\lambda (e^{t}-1))}
特徵函数
exp
(
λ
(
e
i
t
−
1
)
)
{\displaystyle \exp(\lambda (e^{it}-1))}
概率母函数
exp
(
λ
(
z
−
1
)
)
{\displaystyle \exp(\lambda (z-1))}
泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话 交换机 接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害 发生的次数、DNA序列的变异数、放射性原子核的衰变数、雷射 的光子數分布等等。(單位時間內發生的次數,可以看作事件發生的頻率,類似物理的頻率
f
{\displaystyle f}
)。
泊松分布的機率質量函数 为:
P
(
X
=
k
)
=
e
−
λ
λ
k
k
!
{\displaystyle P(X=k)={\frac {e^{-\lambda }\lambda ^{k}}{k!}}}
泊松分布的参数
λ
{\displaystyle \lambda }
是随机事件发生次数的数学期望值。
记号
性质
推導
期望值:(倒數第三至第二是使用泰勒展開式 )
E
(
X
)
=
∑
i
=
0
∞
i
P
(
X
=
i
)
=
∑
i
=
1
∞
i
e
−
λ
λ
i
i
!
=
λ
e
−
λ
∑
i
=
1
∞
λ
i
−
1
(
i
−
1
)
!
=
λ
e
−
λ
∑
i
=
0
∞
λ
i
i
!
=
λ
e
−
λ
e
λ
=
λ
{\displaystyle {\begin{aligned}\mathrm {E} (X)&=\sum _{i=0}^{\infty }\displaystyle iP(X=i)\\&=\sum _{i=1}^{\infty }\displaystyle i{e^{-\lambda }\lambda ^{i} \over i!}\\&=\lambda e^{-\lambda }\sum _{i=1}^{\infty }\displaystyle {\lambda ^{i-1} \over (i-1)!}\\&=\lambda e^{-\lambda }\sum _{i=0}^{\infty }\displaystyle {\lambda ^{i} \over i!}\\&=\lambda e^{-\lambda }e^{\lambda }\\&=\lambda \end{aligned}}}
E
(
X
2
)
=
∑
i
=
0
∞
i
2
P
(
X
=
i
)
=
∑
i
=
1
∞
i
2
e
−
λ
λ
i
i
!
=
λ
e
−
λ
∑
i
=
1
∞
i
λ
i
−
1
(
i
−
1
)
!
=
λ
e
−
λ
∑
i
=
1
∞
1
(
i
−
1
)
!
d
d
λ
(
λ
i
)
=
λ
e
−
λ
d
d
λ
[
∑
i
=
1
∞
λ
i
(
i
−
1
)
!
]
=
λ
e
−
λ
d
d
λ
[
λ
∑
i
=
1
∞
λ
i
−
1
(
i
−
1
)
!
]
=
λ
e
−
λ
d
d
λ
(
λ
e
λ
)
=
λ
e
−
λ
(
e
λ
+
λ
e
λ
)
=
λ
+
λ
2
{\displaystyle {\begin{aligned}\mathrm {E} (X^{2})&=\sum _{i=0}^{\infty }\displaystyle i^{2}P(X=i)\\&=\sum _{i=1}^{\infty }\displaystyle i^{2}{e^{-\lambda }\lambda ^{i} \over i!}\\&=\lambda e^{-\lambda }\sum _{i=1}^{\infty }\displaystyle {i\lambda ^{i-1} \over (i-1)!}\\&=\lambda e^{-\lambda }\sum _{i=1}^{\infty }\displaystyle {1 \over (i-1)!}{d \over d\lambda }(\lambda ^{i})\\&=\lambda e^{-\lambda }{d \over d\lambda }\left[\sum _{i=1}^{\infty }\displaystyle {\lambda ^{i} \over (i-1)!}\right]\\&=\lambda e^{-\lambda }{d \over d\lambda }\left[\lambda \sum _{i=1}^{\infty }\displaystyle {\lambda ^{i-1} \over (i-1)!}\right]\\&=\lambda e^{-\lambda }{d \over d\lambda }(\lambda e^{\lambda })=\lambda e^{-\lambda }(e^{\lambda }+\lambda e^{\lambda })=\lambda +\lambda ^{2}\end{aligned}}}
我們可以得到:
V
a
r
(
X
)
=
(
λ
+
λ
2
)
−
λ
2
=
λ
{\displaystyle Var(X)=(\lambda +\lambda ^{2})-\lambda ^{2}=\lambda }
如同性質:
E
(
X
)
=
V
a
r
(
X
)
=
λ
{\displaystyle E(X)=Var(X)=\lambda }
、
σ
X
=
λ
{\displaystyle \sigma _{X}={\sqrt {\lambda }}}
相互獨立的卜瓦松分佈隨機變數之和仍服從卜瓦松分佈:
X
∼
P
o
i
s
s
o
n
(
λ
1
)
,
Y
∼
P
o
i
s
s
o
n
(
λ
2
)
.
{\displaystyle X\sim Poisson(\lambda _{1}),Y\sim Poisson(\lambda _{2}).}
P
(
X
=
k
1
)
=
λ
1
k
1
e
−
λ
1
k
1
!
,
P
(
Y
=
k
2
)
=
λ
2
k
2
e
−
λ
2
k
2
!
.
{\displaystyle P(X=k_{1})={\dfrac {\lambda _{1}^{k_{1}}e^{-\lambda _{1}}}{k_{1}!}},P(Y=k_{2})={\dfrac {\lambda _{2}^{k_{2}}e^{-\lambda _{2}}}{k_{2}!}}.}
P
(
X
+
Y
=
k
)
=
∑
i
=
0
k
P
(
X
=
i
)
P
(
Y
=
k
−
i
)
=
∑
i
=
0
k
λ
1
i
λ
2
k
−
i
e
−
(
λ
1
+
λ
2
)
i
!
(
k
−
i
)
!
=
e
−
(
λ
1
+
λ
2
)
k
!
∑
i
=
0
k
C
k
i
λ
1
i
λ
2
k
−
i
=
e
−
(
λ
1
+
λ
2
)
(
λ
1
+
λ
2
)
k
k
!
{\displaystyle {\begin{aligned}P(X+Y=k)&=\sum _{i=0}^{k}P(X=i)P(Y=k-i)\\&=\sum _{i=0}^{k}{\frac {\lambda _{1}^{i}\lambda _{2}^{k-i}e^{-(\lambda _{1}+\lambda _{2})}}{i!(k-i)!}}\\&={\frac {e^{-(\lambda _{1}+\lambda _{2})}}{k!}}\sum _{i=0}^{k}C_{k}^{i}\lambda _{1}^{i}\lambda _{2}^{k-i}\\&={\frac {e^{-(\lambda _{1}+\lambda _{2})}(\lambda _{1}+\lambda _{2})^{k}}{k!}}\end{aligned}}}
X
+
Y
∼
P
o
i
s
s
o
n
(
λ
1
+
λ
2
)
{\displaystyle X+Y\sim Poisson(\lambda _{1}+\lambda _{2})}
泊松分布的来源(泊松小数定律)
最大似然估計(MLE)
例子
对某公共汽车站的客流做调查,统计了某天上午10:30到11:47来到候车的乘客情况。假定来到候车的乘客各批(每批可以是1人也可以是多人)是互相独立发生的。观察每20秒区间来到候车的乘客批次,共观察77分钟*3=231次,共得到230个观察记录。其中来到0批、1批、2批、3批、4批及4批以上的观察记录分别是100次、81次、34次、9次、6次。使用极大似真估计(MLE),得到
λ
{\displaystyle \lambda }
的估计为
81
×
1
+
34
×
2
+
9
×
3
+
6
×
4
230
≈
0.87
{\displaystyle {\frac {81\times 1+34\times 2+9\times 3+6\times 4}{230}}\approx 0.87}
。
生成泊松分布的随机变量
参见
参考文献
引用
来源
Guerriero V. Power Law Distribution: Method of Multi-scale Inferential Statistics . Journal of Modern Mathematics Frontier (JMMF). 2012, 1 : 21–28 [2017-10-30 ] . (原始内容 存档于2018-02-21).
Joachim H. Ahrens, Ulrich Dieter. Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions. Computing. 1974, 12 (3): 223–246. doi:10.1007/BF02293108 .
Joachim H. Ahrens, Ulrich Dieter. Computer Generation of Poisson Deviates . ACM Transactions on Mathematical Software. 1982, 8 (2): 163–179. doi:10.1145/355993.355997 .
Ronald J. Evans, J. Boersma, N. M. Blachman, A. A. Jagers. The Entropy of a Poisson Distribution: Problem 87-6. SIAM Review. 1988, 30 (2): 314–317. doi:10.1137/1030059 .
Donald E. Knuth. Seminumerical Algorithms. The Art of Computer Programming. Volume 2. Addison Wesley . 1969.