数学上,同调代数领域中的一个链复形是一个交换群或者模的序列A0, A1, A2... 通过一系列同态dn : An→An-1相连,使得每两个连接的映射的复合为零:dn o dn+1 = 0对于所有n。它们常常写作如下形式:
定义链复形的同调群为 。当所有同调群为零时,此链复形为正合的。
链复形概念的一个变种是上链复形。一个上链复形是一个交换群或者模的序列A0, A1, A2...由一系列同态dn : An→An+1相连,使得任何两个接连的映射的复合为零:dn+1 o dn = 0 对于所有的n:
定义上链复形的上同调群为 。当所有上同调群为零时,此上链复形正合。想法基本上是一样的。
链复形的应用通常定义并应用它们的同调群(对于上链复形是上同调群);在更抽象的范围里,很多等价关系被应用到复形上(例如从链同伦的思想开始,以下将解说)。链复形很容易在交换范畴中定义。
一个有界复形是其中,几乎所有的Ai为零—这样一个有限的复形,用0来伸展到左边和右边。一个例子是定义一个(有限)单纯复形的同调理论的复形。
例子
假定我们给定一个拓扑空间X。
定义Cn(X)(对于自然数n)为自由交换群由X中的奇异单纯形形式化的生成,并定义边界映射
-
其中帽子表示省略一个顶点。也就是说,一个奇异单纯形的边界是限制到其面的交替和。可以证明∂² = 0,所以 是一个链复形;奇异同调 是该复形的同调类;也就是说,
- .
任何光滑流形上的微分k-形式在加法下组成一个交换群(事实上一个R-向量空间)称为Ωk(M)。
外导数 d = d k 映射 Ωk(M) → Ωk+1(M),而且d 2 = 0可以直接从二阶导数的对称性导出,所以k-形式的向量空间和外导数一起成为一个上链复形:
-
该复形的上同调是德拉姆上同调
- .
链映射
两个链复形 、 之间的链映射是一族同态 ,使之满足: ;全体链复形依此构成一范畴。链映射诱导出同调群间的映射。
上链复形的情形类似:两个上链复形 、 之间的上链映射是一族同态 ,使之满足: 。上链映射也诱导出上同调群间的映射。
举例来说,拓扑空间之间的连续映射诱导出奇异上同调的链映射;而光滑流形间的光滑映射则诱导出德拉姆上同调的上链映射。这是函子性或称自然性的一个例子:空间与映射的拓扑/几何性质借此反映在代数结构上,因而变得容易操作与计算。
链同伦
两个链映射 称作是同伦的,当且仅当存在一族同态 使得 。
上链映射的同伦定义也类似,惟此时考虑的是一族同态 。以下给出上链同伦的图解:
(上)链同伦的链映射在(上)同调群上诱导出相同的映射。特别是:同伦于恒等映射 id. 的(上)链映射是拟同构。
链映射的同伦可理解作单纯形同伦的代数翻译。
参看