最佳投影方程

最佳投影方程(optimal projection equations)[1][2][3]控制理论中,建构局部最佳降阶LQG控制器的充分必要条件[4]

LQG控制(线性二次高斯控制)问题是最优控制领域中最基础的问题之一,这问题包括了存在不确定性的线性系统,受到加性高斯白噪声的影响,没有完整的状态资讯(无法量测到所有的状态变数,也无法透过回授得知),对应二次的成本泛函。不过存在唯一解,而且可以建构线性动态回授的控制律,易于计算以及实现。而LQG控制器也是非线性系统中最佳扰动控制的基础[5]

LQG控制器的架构会类似要控制的系统,两者会有相同的维度。因此若系统本身就是高维度,要实现(全阶)LQG控制器会很困难。降阶LQG问题(固定阶LQG问题)事先固定LQG控制器的阶数,因此克服了这个困难。不过在全阶LQG控制器中适用的分离原理,在降阶LQG问题中已无法适用,因此这方面会更困难,而且其解也不唯一。不过可以找到数值分析的演算法[4][6][7][8]来求解对应的最佳投影方程。

问题的数学表示以及其解

连续时间

降阶的LQG控制问题几乎和全阶的LQG控制问题相同。令 表示降阶LQG控制器的状态,唯一的差异是LQG控制器的状态维度 是事先定义好的值,比受控系统的状态维度 要少。

降阶LQG控制器可以表示为下式:

 
 

上述公式刻意写的类似传统全阶LQG控制器的形式,降阶的LQG控制问题也可以改写为下式:

 
 

其中

 

降阶LQG控制器的矩阵  是由所谓的最佳投影方程(optimal projection equations、OPE)来决定[3]

 维的最佳投影方阵 OPE的核心。此矩阵的秩在所有状态下几乎都等于 。相关投影为斜投影(oblique projection): 。最佳投影方程包括四个矩阵微分方程。前二个是LQG控制器对应的矩阵Riccati微分方程的扩展。在方程式中 表示 ,而  维的单位矩阵

 
 

若LQG的维度没有减少,也就是 ,则 ,上述二个方程就是二个没有耦合的矩阵Riccati微分方程,对应全阶的LQG控制器。若 ,则两个方程会有斜投影项 。这也是为何降阶的LQG控制器无法分离的原因,斜投影 是由另外二个矩阵微分方程所决定,其中也和秩的条件(rank conditions)有关。这四个矩阵微分方程组成了最佳投影方程。为了要列出另外二个矩阵微分方程,先定义以下二个矩阵:

 
 
 
 

则最后二个矩阵微分方程如下:

  almost everywhere,
  almost everywhere,

其中

 

此处的 * 表示群广义逆矩阵(group generalized inverse)或Drazin逆矩阵英语Drazin inverse,是唯一的,定义如下

 

其中 + 是摩尔-彭若斯广义逆.

矩阵 都需要是非负对称矩阵。可以建构最佳投影方程的解,而此解可以决定降阶LQG控制器矩阵  

 
 
 
 

上式中的矩阵 是符合以下性质的矩阵:

 几乎在所有状态下。

可以由 的投影分解中得到[4]

若降阶LQG问题中的所有矩阵都是非时变的,且最终时间(horizon) 趋近无限大,则最佳降阶LQG控制器和最佳投影方程也都会是非时变的[1]。此情形下,最佳投影方程左侧的微分项会为零。

离散时间

离散时间的情形类似连续时间的例子,要处理的是将 阶传统离散时间全阶LQG问题转换为事先已知固定阶数的 阶降阶LQG控制器。为了要表示离散时间的OPE,先引入以下二个矩阵:

 
 
 
 

则离散时间OPE为

 .
 .
  almost everywhere,
  almost everywhere.

斜投影(oblique projection)矩阵为

 

非负对称矩阵 是离散时间OPE的解,也决定了降阶LQG控制器的矩阵  and  

 
 
 
 

在上述的方程中,矩阵 是有以下性质的矩阵:

 几乎在所有状态下。

这些矩阵可以从 的投影因式分解中求得[4]

如同在连续时间中的例子一样,若问题中所有的矩阵都是非时变,且且最终时间(horizon) 趋近无限大,降阶LQG控制器就会是非时变的。因此离散时间OPE会收敛到稳态解,决定非时变的降阶LOG控制器[2]

离散时间OPE也可以应用在状态维度,输入维度或是输出维度可变的离散时间系统(具有时变维度的离散时间系统)[6]。若在数位控制器中的取样是不同步的,就可能会出现这类的系统。

参考资料

  1. ^ 1.0 1.1 Hyland D.C; Bernstein D.S. The optimal projection equations for fixed order dynamic compensation. IEEE Transactions on Automatic Control. 1984, AC–29 (11): 1034–1037. doi:10.1109/TAC.1984.1103418. hdl:2027.42/57875. 
  2. ^ 2.0 2.1 Bernstein D.S.; Davis L.D.; Hyland D.C. The optimal projection equations for reduced-order discrete-time modeling estimation and control (PDF). Journal of Guidance Control and Dynamics. 1986, 9 (3): 288–293 [2020-02-04]. Bibcode:1986JGCD....9..288B. doi:10.2514/3.20105. hdl:2027.42/57880. (原始内容 (PDF)存档于2022-01-09). 
  3. ^ 3.0 3.1 Haddad W.M.; Tadmor G. Reduced-order LQG controllers for linear time-varying plants. Systems & Control Letters. 1993, 20 (2): 87–97. doi:10.1016/0167-6911(93)90020-7. 
  4. ^ 4.0 4.1 4.2 4.3 Van Willigenburg L.G.; De Koning W.L. Numerical algorithms and issues concerning the discrete-time optimal projection equations. European Journal of Control. 2000, 6 (1): 93–100. doi:10.1016/s0947-3580(00)70917-4.  Associated software download from Matlab Central页面存档备份,存于互联网档案馆).
  5. ^ Athans M. The role and use of the stochastic linear-quadratic-Gaussian problem in control system design. IEEE Transactions on Automatic Control. 1971, AC–16 (6): 529–552. doi:10.1109/TAC.1971.1099818. 
  6. ^ 6.0 6.1 Van Willigenburg L.G.; De Koning W.L. Optimal reduced-order compensators for time-varying discrete-time systems with deterministic and white parameters. Automatica. 1999, 35: 129–138. doi:10.1016/S0005-1098(98)00138-1.  Associated software download from Matlab Central页面存档备份,存于互联网档案馆).
  7. ^ Zigic D.; Watson L.T.; Collins E.G.; Haddad W.M.; Ying S. Homotopy methods for solving the optimal projection equations for the H2 reduced order model problem. International Journal of Control. 1996, 56 (1): 173–191. doi:10.1080/00207179208934308. 
  8. ^ Collins Jr. E.G; Haddad W.M.; Ying S. A homotopy algorithm for reduced-order dynamic compensation using the Hyland–Bernstein optimal projection equations. Journal of Guidance Control & Dynamics. 1996, 19 (2): 407–417. doi:10.2514/3.21633.