林德-汉普逊循环

林德-汉普逊循环用于气体的液化,特别是空气分离。 威廉·汉普逊英语William Hampson卡尔·冯林德于1895年分别独立地申请了该循环的专利。[1]

1895年专利

林德-汉普逊系统引入了再生冷却——一种正反馈冷却系统。热交换器布置允许绝对温差(e.g.0.27 °C/atm J-T下空气的冷却)超过单级冷却,并达到液化“固定”气体所需的低温。

汉普森-林德循环与西门子循环的不同在于膨胀阶段。西门子循环英语Siemens cycle中气体对外做功降温度降低,林德-汉普逊循环则仅依赖于焦耳-汤姆逊效应。优点是冷侧不需要移动部件。[1]

循环过程

  1. 通过压缩加热气体,以给予其参与循环所需的外部能量。
  2. 通过将气体浸入低温环境的方式将其冷却,使其失去一部分热量(和能量),
  3. 通过换热器用来自下一(和最后)阶段的返流气体对其进行冷却,
  4. 使气体通过焦耳-汤姆逊孔,以进一步冷却,降低热量,但保存势能而非动能。
    现阶段气体达到整个过程的最低温度,将再度循环并被送回-
  5. 加热-参与阶段3时作为冷却剂,然后
  6. 送回至阶段1,开始下一个循环,并通过压缩略微复热。

在每个循环中,净冷却大于在循环开始时加入的热量。当气体经过更多循环温度降逐步降低,在扩压缸处达到更低的温度将变得更为困难。

扩展阅读

参考

  1. ^ 1.0 1.1 Technical information. Kryolab, Lund University. [26 January 2013]. (原始内容存档于2016-10-30).