维纳空间
维纳空间是测度理论中的空间,在无限维度的向量空间中用来建立局部有限的正值测度。它是美国数学家诺伯特·维纳在1923年研究抽象布朗运动时首先引进的。这牵涉到对维纳测度和积分,预期平移(非随机平移),随机平移的介绍。
定义
设定 为可分离的希尔伯特空间, 为可分离的巴拿赫空间。 是稠密集值域中的一个单射连续的线性映射(即 )。那个值域Radonifying function希尔伯特空间的柱集测度 。这三者 (即 )被称为抽象维纳空间。在 上的测度 被称为 的抽象维纳空间。希尔伯特空间 也称为Cameron-Martin 空间或再生核希尔伯特空间。
性质
经典维纳空间
参见
这是一篇与统计学相关的小作品。您可以通过编辑或修订扩充其内容。 |