复小波转换
复小波转换或复小波转换(Complex Wavelet Transform)是一个离散小波转换(DWT)的复数形式延伸。
它是一个二维小波变换,它提供多分辨率,稀疏表示,以及图像结构的有益特性。另外,他还提供其幅度的高度移位不变性。
在图像处理中使用复小波最初始于1995年,由 J.M. Lina 和 L. Gagnon[1]用多贝西正交滤波器银行的框架[2]。然后剑桥大学剑桥大学教授Prof. Nick Kingsbury [1][2][3]归纳于1997年。 在计算机视觉的区域中,通过利用可见的内文的概念,可以快速地集中于候选区域,其中可以发觉到有兴趣的项目,然后通过复小波转换计算那些被选定的特定区域。这些附加且非必要的特征,在精确的检测和识别更小的物体非常有用。同样地,复小波转换可以应用于类似检测皮质的活化素,另外的时间独立成分分析(TICA)可用于提取底层独立来源,其数量由贝叶斯信息准则[3][永久失效链接]确定。 然而,复小波转换的一个缺点是这种变换是,相较于可分离的离散小波转换(separable DWT),它显示出(其中d是被转换信号的维度)的冗余(redundancy)。
复小波转换的主要概念是,基于在离散小波转换的复数函式空间上投影的复数投影,而做的复数小波转换。 而他的优点主要是:
- 1. 可以解决一些离散小波转换的缺陷
- 2. 可控制的多馀项-可以控制的多馀项可以用来平衡转向的敏感度以及转换的冗馀。
- 3. 可修改性(使用弹性)-可以创建复杂的双密度离散小波转换:一个移位不敏感的,定向的,在M维空间里面有低冗余(3M-1)/(2M-1)的复数小波转换。
二分复小波变换
二分复小波变换(DTCWT)用两个分开的离散小波转换(DWT)的分解来计算复数转换(tree a and tree b)。
如果使用的其中一个滤波器被特别设计与其他的不同,则有可能一边的离散小波转换会得到一个实数的系数,而另外一边则会得到一个虚的系数。
两个这种冗馀为分析提供了额外的资讯,但使用了额外的计算能力为代价。它也提供了近似移动不变性(不像离散小波转换),但仍允许信号的完美重建。
而滤波器的设计对这个转换的运算正确性而言特别重要,以及其必须的特性要有:
- 在二分树的低频滤波器一定要有半个采样周期的差异。
- 重建的滤波器是分析的逆向转换。
- 所有的滤波器都来自于一样的正交组。
- 分支 a 的滤波器是分支 b 的滤波器的反向。
- 两个树有相同的频率响应
延伸
参考资料
- ^ N. G. Kingsbury. Image processing with complex wavelets. Phil. Trans. Royal Society London. London. September 1999 [2015-01-22]. (原始内容存档于2008-02-09).
- ^ Kingsbury, N G. Complex wavelets for shift invariant analysis and filtering of signals (PDF). Journal of Applied and Computational Harmonic Analysis. May 2001, 10 (3): 234–253 [2015-01-22]. doi:10.1006/acha.2000.0343. (原始内容存档 (PDF)于2012-09-07).
- ^ Selesnick, Ivan W.; Baraniuk, Richard G. and Kingsbury, Nick G. The Dual-Tree Complex Wavelet Transform (PDF). IEEE Signal Processing Magazine. November 2005, 22 (6): 123–151 [2015-01-22]. doi:10.1109/MSP.2005.1550194. (原始内容存档 (PDF)于2013-07-18).
外部链接
- An MPhil thesis: Complex wavelet transforms and their applications
- CWT for EMG analysis(页面存档备份,存于互联网档案馆)
- A paper on DTCWT
- Another full paper
- 3-D DT MRI data visualization(页面存档备份,存于互联网档案馆)
- Multidimensional, mapping-based complex wavelet transforms (页面存档备份,存于互联网档案馆)
- Image Analysis Using a Dual-Tree -band Wavelet Transform (2006), preprint, Caroline Chaux, Laurent Duval, Jean-Christophe Pesquet
- Noise covariance properties in dual-tree wavelet decompositions (2007), preprint, Caroline Chaux, Laurent Duval, Jean-Christophe Pesquet
- A nonlinear Stein based estimator for multichannel image denoising (2007), preprint, Caroline Chaux, Laurent Duval, Amel Benazza-Benyahia, Jean-Christophe Pesquet
- Caroline Chaux website ( -band dual-tree wavelets)
- Laurent Duval website ( -band dual-tree wavelets)(页面存档备份,存于互联网档案馆)
- James E. Fowler (dual-tree wavelets for video and hyperspectral image compression)(页面存档备份,存于互联网档案馆)
- Nick Kingsbury website (dual-tree wavelets)[永久失效链接]
- Jean-Christophe Pesquet website ( -band dual-tree wavelets)(页面存档备份,存于互联网档案馆)
- Ivan Selesnick (dual-tree wavelets)