闭花受精

闭花受精是一种植物在关闭的花朵内完成自花授粉,并产生种子有性繁殖方式[1]闭锁花(Cleistogamous Flower, CL)是闭花受精的关键,这类花朵不开放,授粉过程在花朵内部自发完成[2]。闭花受精现象分布在50个228个的约693种植物中,常见于堇菜科凤仙花科禾本科远志科以及豆科等植物类群[3]

毛叶黄堇Viola pubescens)的(a)开放花与(b)闭锁花

分类

闭花受精植物通常分为以下三类[2]

  • 完全闭花受精:所有花均为闭锁花,植物不产生开放花。
  • 诱导闭花受精:在特定环境条件下诱发闭锁花的产生。
  • 两型闭花受精(Dimorphic Cleistogamy):同一植物在不同部位或不同时期同时产生闭锁花和开放花(Chasmogamous Flower, CH)。

闭锁花通常具有减少的花冠雄蕊数量[4]。相较于开放花鲜艳的花瓣和特殊气味,闭锁花花瓣发育不全或完全缺失,通常无色,且雄蕊数量减少,有时雄蕊退化为丝状或原基状[5][6][7]

假说

关于两型闭花受精现象,存在多种假说[2]

  • 繁殖保障:闭锁花是一种应对开放花授粉失败的备份机制。在授粉不成功的情况下,闭锁花可以通过自交保障种子的生产,延长生长季节的有性生殖时间[8][9][10][11]
  • 防止自交衰退:自交后若有害等位基因未能被清除,将增加群体遗传漂变与自交衰退的风险[12][13]。闭锁花主要依靠自交繁殖,而开放花通过异交产生更多具遗传变异的后代,从而维持后代的遗传多样性,以适应环境变化[9][14][10][15]
  • 能量分配:闭锁花的能量消耗较低,因为它们节省了产生更多花粉蜜腺体与花瓣的成本;而开放花较大,通常具有吸引传粉昆虫的功能,因此需要更多能量[10][16]。两型闭花受精可以通过不同花型的比例调整能量分配,以优化其生殖效益[9][17][18][19]
  • 环境异质性:环境因素(如光周期光强温度、土壤营养和水分等)决定了闭锁花与开放花的产生,环境异质性促进了两种花型的分化与选择[6][20][21][15]

参考文献

  1. ^ Kuhn M. Bemerkungen über Vandellia und den Blüten dimorphismus. Bot. Zeitung. 1867, 25: 65–67. 
  2. ^ 2.0 2.1 2.2 Li, Qiaoxia; Li, Youlong; Li, Jigang; Chen, Chenlong; Sun, Kun. Effects of photoperiods on the development of chasmogamous and cleistogamous flowers in <i>Viola monbeigii</i> and <i>V. dissecta</i>. Biodiversity Science. 2024, 32 (6): 23484. doi:10.17520/biods.2023484. 
  3. ^ Culley, Theresa M.; Klooster, Matthew R. The Cleistogamous Breeding System: A Review of Its Frequency, Evolution, and Ecology in Angiosperms. The Botanical Review. 2007-01, 73 (1): 1–30. doi:10.1663/0006-8101(2007)73[1:TCBSAR]2.0.CO;2. 
  4. ^ Uphof, J. C. Th. Cleistogamic flowers. The Botanical Review. 1938-01, 4 (1): 21–49. doi:10.1007/BF02869833. 
  5. ^ Wang, Yunjing; Ballard, Harvey E.; McNally, R. Ryan; Wyatt, Sarah E. Gibberellins are involved but not sufficient to trigger a shift between chasmogamous-cleistogamous flower types in Viola pubescens 1. The Journal of the Torrey Botanical Society. 2013-01, 140 (1): 1–8. doi:10.3159/TORREY-D-12-00044.1. 
  6. ^ 6.0 6.1 Li, Qiaoxia; Huo, Qingdi; Wang, Juan; Zhao, Jing; Sun, Kun; He, Chaoying. Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC Plant Biology. 2016-12, 16 (1). doi:10.1186/s12870-016-0832-2. 
  7. ^ Li, Q; Li, J; Zhang, L; Pan, C; Yang, N; Sun, K; He, C. Gibberellins are required for dimorphic flower development in Viola philippica.. Plant science : an international journal of experimental plant biology. 2021-02, 303: 110749. PMID 33487338. doi:10.1016/j.plantsci.2020.110749. 
  8. ^ Le Corff, Josiane. Effects of light and nutrient availability on chasmogamy and cleistogamy in an understory tropical herb, Calathea micans (Marantaceae). American Journal of Botany. 1993-12, 80 (12): 1392–1399. doi:10.1002/j.1537-2197.1993.tb15383.x. 
  9. ^ 9.0 9.1 9.2 Culley, Theresa M. Reproductive Biology and Delayed Selfing in Viola pubescens (Violaceae), an Understory Herb with Chasmogamous and Cleistogamous Flowers. International Journal of Plant Sciences. 2002-01, 163 (1): 113–122. doi:10.1086/324180. 
  10. ^ 10.0 10.1 10.2 Culley, Theresa M.; Klooster, Matthew R. The Cleistogamous Breeding System: A Review of Its Frequency, Evolution, and Ecology in Angiosperms. The Botanical Review. 2007-01, 73 (1): 1–30. doi:10.1663/0006-8101(2007)73[1:TCBSAR]2.0.CO;2. 
  11. ^ Koontz, SM; Weekley, CW; Haller Crate, SJ; Menges, ES. Patterns of chasmogamy and cleistogamy, a mixed-mating strategy in an endangered perennial.. AoB PLANTS. 2017-11, 9 (6): plx059. PMID 29308127. doi:10.1093/aobpla/plx059. 
  12. ^ Masuda, Michiko; Yahara, Tetsukazu; Maki, Masayuki. Evolution of floral dimorphism in a cleistogamous annual, Impatiens noli‐tangere L. occurring under different environmental conditions. Ecological Research. 2004-11, 19 (6): 571–580. doi:10.1111/j.1440-1703.2004.00673.x. 
  13. ^ Ginwal, H. S. Inbreeding depression in Eucalyptus tereticornis Sm. due to cleistogamous flowering. New Forests. 2010-09, 40 (2): 205–212. doi:10.1007/s11056-010-9194-z. 
  14. ^ Ansaldi, Beth H.; Weber, Jennifer J.; Goodwillie, Carol; Franks, Steven J. Low levels of inbreeding depression and enhanced fitness in cleistogamous progeny in the annual plant Triodanis perfoliata. Botany. 2019-07, 97 (7): 405–415. doi:10.1139/cjb-2019-0022. 
  15. ^ 15.0 15.1 Sternberger, AL; Ruhil, AVS; Rosenthal, DM; Ballard, HE; Wyatt, SE. Environmental impact on the temporal production of chasmogamous and cleistogamous flowers in the mixed breeding system of Viola pubescens.. PloS one. 2020, 15 (3): e0229726. PMID 32160228. doi:10.1371/journal.pone.0229726. 
  16. ^ Sternberger, AL; Bowman, MJ; Kruse, CPS; Childs, KL; Ballard, HE; Wyatt, SE. Transcriptomics Identifies Modules of Differentially Expressed Genes and Novel Cyclotides in Viola pubescens.. Frontiers in plant science. 2019, 10: 156. PMID 30828342. doi:10.3389/fpls.2019.00156. 
  17. ^ Parra-Tabla, V; Munguía-Rosas, M; Campos-Navarrete, MJ; Ramos-Zapata, JA. Effects of flower dimorphism and light environment on arbuscular mycorrhizal colonisation in a cleistogamous herb.. Plant biology (Stuttgart, Germany). 2015-01, 17 (1): 163–8. PMID 25077675. doi:10.1111/plb.12223. 
  18. ^ Zhang, Li-Hui; Sun, Qi; Zhao, Ji-Min; Zhang, Yan-Wen. Plasticity in the reproductive strategy of a clonal cleistogamous species, Pseudostellaria heterophylla. Plant Ecology. 2018-12, 219 (12): 1493–1502. doi:10.1007/s11258-018-0896-1. 
  19. ^ Zhang, Jiyu; Wu, Fan; Yan, Qi; John, Ulrik P; Cao, Mingshu; Xu, Pan; Zhang, Zhengshe; Ma, Tiantian; Zong, Xifang; Li, Jie; Liu, Ruijuan; Zhang, Yufei; Zhao, Yufeng; Kanzana, Gisele; Lv, Yanyan; Nan, Zhibiao; Spangenberg, German; Wang, Yanrong. The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal. 2021-03, 19 (3): 532–547. PMID 32964579. doi:10.1111/pbi.13483. 
  20. ^ Seguí, J.; Lázaro, A.; Traveset, A.; Salgado-Luarte, C.; Gianoli, E. Phenotypic and reproductive responses of an Andean violet to environmental variation across an elevational gradient. Alpine Botany. 2018-04, 128 (1): 59–69. doi:10.1007/s00035-017-0195-9. 
  21. ^ Furukawa, T; Itagaki, T; Murakoshi, N; Sakai, S. Inherited dimorphism in cleistogamous flower production in Portulaca oleracea: a comparison of 16 populations growing under different environmental conditions.. Annals of botany. 2020-03-09, 125 (3): 423–431. PMID 31630158. doi:10.1093/aob/mcz167.