Noiselet是一群具有类似杂讯性质的函数。Noiselet和小波(wavelet)的关系就如同傅立叶级数基底函数英语Basis function时域信号的关系,如果一个信号在小波域具有紧致性,则此信号可以在noiselet域展开[1]

应用

压缩感知中,Noiselet可以用来重建在小波域具有紧致性的信号[2],例如,在noiselet域取得MRI的资料,再利用压缩感知,可以由欠采样(undersampled)的资料重建出影像[3]

参见

参考文献

  1. ^ R. Coifman, F. Geshwind, and Y. Meyer, Noiselets, Applied and Computational Harmonic Analysis, 10 (2001), pp. 27–44. doi:10.1006/acha.2000.0313
  2. ^ E. Candes and J. Romberg, Sparsity and incoherence in compressive sampling, 23 (2007), pp. 969-985. doi:10.1088/0266-5611/23/3/008
  3. ^ K. Pawar, G. Egan, and Z. Zhang, Multichannel Compressive Sensing MRI Using Noiselet Encoding, 05 (2015), doi:10.1371/journal.pone.0126386