底座形撞擊坑
底座形隕石坑(pedestal crater)是行星地質學中一種隕石坑類型,它的撞擊噴射物散佈於周圍地形之上,從而形成一座凸起的平台(如底座)。當撞擊坑噴出的物質形成一層抗侵蝕層,並使鄰近區的侵蝕速度比其他區域慢時,就形成一座底座形隕石坑。一些底座被精確測量出高於周圍區域數百米,這也意味着撞擊坑中有數百米的材料被侵蝕掉,結果是隕坑及其噴出物覆蓋層都明顯高出周邊環境。底座型隕石坑是在水手號任務期間被首次觀測到的[1][2][3][4]。
描述
通過進一步的研究,研究人員將相關隕石坑分為三種不同的類別[5],並對它們的形成有了新的見解。過度噴射坑(Excess ejecta craters)[6]和棲留坑(perched craters)[7][8][9]都比底座形坑大[10][11]。所有這三種隕坑都有相似的碗狀坑形和高於周邊地表的環坑平台。過度噴射坑和棲留坑顯示有噴發物堆積,但底座形撞擊坑通常不顯示。三者都位於相同的區域,並且高出周邊地形的高度似乎都有相同,平均高出近50米[12]。過度噴射坑和棲留坑之間的主要區別為棲留坑的碗坑很淺,有時幾乎填滿了物質。底座形隕坑一般則靠近絕壁(懸崖)高原中央。
現在認為,所有這三種類型的隕石坑都是撞擊冰層後造成的。較大的過度噴射坑和棲留坑完全擊透了冰層,也抵達了較淺的岩石層。部分岩石層堆積在撞擊坑邊緣周圍,形成一圈粗糙的噴發沉積物,噴出物保護了它們下方的區域不受侵蝕,使得這些隕坑高出周圍地表之上。較小的「底座形隕坑」則通過不同的作用過程形成了一層保護層。模擬顯示,對冰層巨大撞擊將產生強烈的熱浪,足以融化部分積冰,由此產生的水可溶解鹽和礦物質,並產生抗侵蝕的覆蓋層[13]。
對這些不同隕石坑形成過程的新認識,使幫助科學家們了解了火星上的富冰物質如何在亞馬遜紀時期多次沉積在兩半球的中緯度區的。例如[14],在那段時期,火星自轉軸傾角(傾斜)經歷了許多大的變化[15][16],這些變化導致了氣候的變遷。由於目前的傾角,火星兩極都擁有一層厚厚的積冰。有時,兩極面向太陽,導致極地冰層中的冰向中緯度轉移,正是這段時間才形成了富冰層[12]。
圖集
-
高解像度成像科學設備在HiWish項目指示下顯示的卡西烏斯區一座底座形撞擊坑。由於小行星從東北方向以低角度撞擊,造成撞擊噴發物在隕坑周圍分佈並不對稱,噴出物也阻止了對下表層的侵蝕,因此,隕坑看上去很高。
-
前一幅底座形隕坑照片的東側(右側)特寫,顯示了多邊形的裂片。由於隕石坑邊緣有裂片和多邊形構造塊,人們認為在這一保護頂下蘊藏有水冰。照片為HiWish項目指示下的高解像度成像科學設備拍攝。注意:這是前一幅照片的放大版。
-
HiWish項目指示下高解像度成像科學設備顯示的卡西烏斯區一座底座形隕坑,頂層保護了下方地層不受侵蝕。
-
高解像度成像科學設備顯示的底座形隕坑暗線為塵暴痕跡,地點為卡西烏斯區。
-
高解像度成像科學設備顯示的位於刻布壬尼亞區的一座底座形隕坑。
-
高解像度成像科學設備顯示的位於希臘區的一座底座形隕坑。
-
當撞擊產生的噴出物保護了下方地層不受侵蝕時,就會形成底座形隕石坑。這一過程的結果使隕石坑高出在周邊地形之上。
-
帶岩層結構的底座形撞擊坑,高解像度成像科學設備拍攝於亞馬遜區。
-
該圖顯示了部分底座形隕坑的形成過程。按這種思路,撞擊體會進入一個富冰層,但不會再深入。衝擊產生的熱量和風使地表硬化,防止侵蝕。這種硬化也可通過冰融化產生粘結地表的鹽/礦物溶液來實現。
-
高解像度成像科學設備在一座底座形撞擊坑頂部附近看到的暗色斜坡條紋。
-
高解像度成像科學設備在一座底座形撞擊坑附近看到的暗色斜坡條紋和岩層。
-
位於歐克西亞沼區的底座形隕坑和山脊,靠近圖片頂部的平頂山脊曾經是一條倒轉河流,底座形隕坑坐落在山脊上,因此它更年輕。
-
高解像度成像科學設備顯示的比布利斯火山口底座形坑。
-
背景相機拍攝的底座形隕石坑噴出物表面下岩層的廣角照片。
-
HiWish項目指示下高解像度成像科學設備顯示的底座形隕石坑頂層下的岩層。
-
HiWish項目指示下高解像度成像科學設備顯示的底座形隕坑噴出物表面下岩層的近景。
另請參閱
參考文獻
- ^ Pedestal Crater Development. JPL – NASA. 2015-07-01 [2017-08-10]. (原始內容存檔於2021-08-01).
- ^ Bleacher, J. and S. Sakimoto. Pedestal Craters, A Tool For Interpreting Geological Histories and Estimating Erosion Rates. LPSC
- ^ Themis – Pedestal Craters in Utopia. [2010-03-26]. (原始內容存檔於2010-01-18).
- ^ McCauley, John F. Mariner 9 Evidence for Wind Erosion in the Equatorial and Mid-Latitude Regions of Mars. Journal of Geophysical Research. December 1972, 78 (20): 4123–4137(JGRHomepage). Bibcode:1973JGR....78.4123M. doi:10.1029/JB078i020p04123.
- ^ Barlow, N.G.; Boyce, Joseph M.; Costard, Francois M.; Craddock, Robert A.; et al. Standardizing the nomenclature of martian impact crater ejecta morphologies. J. Geophys. Res. 2000, 105 (E11): 26733–26738 [2021-08-01]. Bibcode:2000JGR...10526733B. doi:10.1029/2000JE001258 . (原始內容存檔於2021-08-01).
- ^ Black, B.A.; Stewart, S.T. Excess ejecta craters record episodic ice-rich layers at middle latitudes on Mars. J. Geophys. Res. 2008, 113 (E2): E02015. Bibcode:2008JGRE..113.2015B. doi:10.1029/2007JE002888.
- ^ Boyce, J.M.; Mouginis-Mark, P.; Garbeil, H. Ancient oceans in the northern lowlands of Mars: Evidence from impact crater depth/diameter relationships. J. Geophys. Res. 2005, 110 (E3): E03008. Bibcode:2005JGRE..110.3008B. doi:10.1029/2004JE002328 .
- ^ Garvin, J.B.; Sakimoto, S.E.H.; Frawley, J.J.; Schnetzler, C. North polar region craterforms on Mars: Geometric characteristics from the Mars Orbiter Laser Altimeter. Icarus. 2000, 144 (2): 329–352. Bibcode:2000Icar..144..329G. doi:10.1006/icar.1999.6298.
- ^ Meresse, S.; Costard, F.; Mangold, N.; Baratoux, D.; et al. Martian perched craters and large ejecta volume: Evidence for episodes of deflation in the northern lowlands. Meteorit. Planet. Sci. 2006, 41 (10): 1647–1658 [2013-03-03]. Bibcode:2006M&PS...41.1647M. doi:10.1111/j.1945-5100.2006.tb00442.x . (原始內容存檔於2017-10-04).
- ^ Barlow, N.G., 2005. A new model for pedestal crater formation. Workshop on the Role of Volatiles and Atmospheres on Martian Impact Craters. LPI Contribution No. 1273, pp. 17–18.
- ^ Kadish, S.J.; Head, J.W.; Barlow, N.G. Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits. Icarus. 2010, 210 (1): 92–101. Bibcode:2010Icar..210...92K. doi:10.1016/j.icarus.2010.06.021.
- ^ 12.0 12.1 Kadish, S.; Head, J. Impacts into non-polar ice-rich paleodeposits on Mars: Excess ejecta craters, perched craters and pedestal craters as clues to Amazonian climate history. Icarus. 2011, 215 (1): 34–46. Bibcode:2011Icar..215...34K. doi:10.1016/j.icarus.2011.07.014.
- ^ Wrobel, Kelly; Schultz, Peter; Crawford, David. An atmospheric blast/thermal model for the formation of high-latitude pedestal craters. Meteoritics & Planetary Science. 2006, 41 (10): 1539. Bibcode:2006M&PS...41.1539W. doi:10.1111/j.1945-5100.2006.tb00434.x.
- ^ 存档副本 (PDF). [2021-08-01]. (原始內容存檔 (PDF)於2021-08-31).
- ^ Head, J.W.; Mustard, J.F.; Kreslavsky, M.A.; Milliken, R.E.; et al. Recent ice ages on Mars. Nature. 2003, 426 (6968): 797–802. Bibcode:2003Natur.426..797H. PMID 14685228. S2CID 2355534. doi:10.1038/nature02114.
- ^ Levrard, B.; Forget, F.; Montmessin, F.; Laskar, J. Recent ice-rich deposits formed at high latitudes on Mars by sublimation of unstable equatorial ice during low obliquity. Nature. 2004, 431 (7012): 1072–1075. Bibcode:2004Natur.431.1072L. PMID 15510141. S2CID 4420650. doi:10.1038/nature03055.