量子去相干
在量子力學裏,開放量子系統的量子相干性會因為與外在環境發生量子糾纏而隨着時間逐漸喪失,這效應稱為量子退相干(英語:Quantum decoherence),又稱為量子去相干。量子去相干是量子系統與環境因量子糾纏而產生的後果。由於量子相干性而產生的干涉現象會因為量子去相干而變得消失無蹤。量子去相干促使系統的量子行為變遷成為經典行為,這過程稱為「量子至經典變遷」(quantum-to-classical transition)。德國物理學者漢斯·澤賀最先於1970年提出量子去相干的概念。自1980年以來,量子去相干已成為熱門研究論題。[2][1]:10-12
實際而言,不存在孤立系統,特別是不存在孤立宏觀系統,通過某種方式,每個量子系統都會持續地與外在環境耦合,發生量子糾纏,從而形成糾纏態。因此,量子去相干可以視為存在於量子系統內部的相干性隨着時間流易而退定域(delocalize)至量子系統與環境所組成的糾纏系統,換句話說,量子系統內部的幾個成分彼此之間的相位關係,會逐漸地退定域至整個系統,也就是說,量子系統的相位資訊會持續地洩露至環境,從而有效地促使伴隨着相干性的干涉現象消失無蹤。
量子去相干能夠解釋為什麼不會觀察到干涉現象,但是,量子去相干能否解釋波函數塌縮的後果,這論題至今仍舊存在巨大爭議,一個很重要的原因就是,很難將這論題跟量子力學的詮釋做分割,而人們各自有各自青睞的詮釋。量子去相干是一種標準量子力學效應,關於它是否能夠解釋波函數塌縮的後果,存在有很多種觀點,大多數過於樂觀或過於悲觀的觀點,皆可追溯至對於量子去相干運作範圍的誤解。[1]:49-50
量子去相干不是一種量子力學詮釋,而是利用量子力學分析獲得的結果。它嚴格遵守量子力學,並沒有對量子力學的基礎表述做任何修改。很多完成的量子實驗已證實量子去相干的存在與正確性。[2]:8
在實現量子計算機方面,量子去相干是一種必須面對的挑戰,因為量子計算機的運作倚賴維持量子相干態的演化不被環境攪擾。簡言之,必需良好維持量子相干態與管控量子去相干,才能夠實際進行量子運算。[1]:第7章
理論概述
開放系統
在經典物理裏,孤立系統是一個很有用的概念。理想的孤立系統完全與外在環境相互隔絕,不會與外在環境耦合,不會與外在環境相互傳輸物質或能量,這樣,可以專注研究孤立系統,而不必顧慮到外在環境因素。例如,思考一個移動於空間的圓球,為了簡單化分析其感受到地心重力而呈現的運動軌道,可以忽略空氣阻力、微風、月亮重力或太陽重力的影響,將這圓球與地球所形成的系統視為一個孤立系統。
與孤立系統迥然不同,開放系統可以與外在環境耦合,可以與外在環境交換物質或能量。近幾十年來,物理學者逐漸發覺,當量子系統與外在環境耦合時,會產生量子糾纏,連帶地將量子系統內部的量子相干性逐漸洩露至外在環境,因此,開放系統成為促成量子去相干的重要概念。[1]:3-4
馮紐曼量子測量綱要
假設在一個開放量子系統裏,有兩個正交的態向量 、 ,它們共同形成標準正交基 ,例如,在雙縫路徑實驗裏,如右圖所示,它們分別代表粒子移動於兩條通過不同狹縫 、 的路徑量子態。按照馮紐曼量子測量綱要,它們與環境態的共同演化式表示為(在這裏,環境所扮演的角色就好似激光照射器)[1]:72-76
- 、
- ;
其中, 是初始的環境態, 、 是演化後的環境態。
假若系統為 ,則環境會演化為 ,在雙縫路徑實驗裏,光子被探測器 吸收;假若系統為 ,則環境會演化為 ,在雙縫路徑實驗裏,光子被探測器 吸收。
注意到量子態 、 不會因為開放系統與環境相互作用而改變,因此,環境可以被想像為正在進行一種理想測量,稱為量子非破壞性測量。
假設量子系統的初始態為疊加態
- ;
其中, 、 分別為量子系統處於 、 的機率幅,遵守歸一條件 。
這量子系統的相干性與複數 、 的相對相位密切關聯。量子去相干的目的就是在消滅這相對相位所導致的相干性。
遵守馮紐曼量子測量綱要,隨着時間流易, 與環境態 會演化為
- ;
其中, 、 分別為整體系統的初始態與終止態。
約化密度算符
假設對整個系統的可觀察量 做測量,而此可觀察量 只涉及到量子系統,未涉及到環境:[2]:9
- ;
其中, 是對應於可觀察量 的算符, 是其涉及到量子系統的部分, 是在環境的單位算符。
則可觀察量 期望值,是取其算符與密度算符的乘積對於整個系統的跡數。這跡數也是取其作用於量子系統的算符與約化密度算符兩者的乘積對於量子系統的跡數:
- ;
其中, 是整個系統的密度算符, 是量子系統的約化密度算符。
因此,量子系統的性質只與其約化密度算符有關。如果知道量子系統的約化密度算符,則可計算量子系統的任意可觀察量的期望值,從而分析量子系統的性質。約化密度算符 定義為取整個系統對於環境的跡數:
- 。
經過一番運算,可以得到
- 。
分辨性
假設 ,即 就是 ,兩個環境態完全重疊,則整個系統的量子態可以寫為兩個純態的張量積:
- 。
這意味着量子系統與環境彼此之間不存在量子糾纏。對於環境做測量,無法從測量結果推斷量子系統是處於量子態 或 。量子系統的相干性仍舊停留在量子系統裏,沒有退定域至整個系統。在雙縫路徑實驗裏,這表示激光的光子與電子碰撞後被散射至同樣的探測器,這可能是因為電子在兩條路徑的運動很類似。
假若 越小,則 、 的重疊部分越小。取 的極限,即 、 不相互重疊。假若得知環境態是 ,則系統量子態就是 ,假若得知環境態是 ,則系統量子態就是 。因此,從經典的宏觀環境態可以分辨開放系統的微觀量子態是 或 。在雙縫路徑實驗裏,這表示激光的光子被電子散射後的結果大不相同,這可能是因為電子在兩條路徑的運動很容易被分辨出來。
雖然對於每一個案例,並不一定 必須趨於零,但很多關於量子系統與環境相互作用的物理實際模型都會顯示出這種極限,因為環境擁有幾乎無窮大的自由度,在雙縫路徑實驗裏,激光的光子會不斷的與電子發生碰撞,從而分辨出電子的運動路徑,所以, 趨於零是很合理的設定。[2]:10
去相干機制
回想約化密度算符為[2]:10
- 。
在雙縫路徑實驗裏,從約化密度算符,可以計算出在探測屏位置為 的電子密度 :
- 。
注意到最後一個實值項就是干涉項。當設定 趨於零時,這干涉項也會趨於零,因此,干涉圖案會消失無蹤,相位相干資訊也不見蹤影,電子密度 變為
- 。
這就是量子去相干的效應。量子去相干不是一種量子力學詮釋,而是利用量子力學分析開放量子系統與環境相互作用所得到的結果。它嚴格遵守量子力學,並沒有對量子力學的基礎表述做任何修改。[2]:8
由於設定 趨於零,約化密度算符被對角化:
- 。
這意味着,相位相干資訊已不再存在於量子系統層次,相位相干資訊已洩漏至外在環境,只有從觀測整個系統,才能重新獲得相位相干資訊。
只單獨考慮量子系統,其隨着時間流易的演化是呈非么正性,雖然量子系統與環境整體隨着時間流易的演化是呈么正性。[3]這樣,量子系統的演化貌似具有不可逆性。由於環境擁有幾乎無窮大的自由度,而且很難適當地操縱環境,因此,一般而言,量子去相干具有不可逆性。[2]:12[1]:68-69
儘管對應於約化密度算符的矩陣(稱為約化密度矩陣)與描述混合態的密度矩陣在形式上完全相同,無法從矩陣區分出到底是糾纏系統的一部分還是混合態,約化密度算符所描述的不是「真混合物」(proper mixture)。而是一種「瑕混合物」(improper mixture)[4]。對於雙縫路徑案例,假設量子系統處於混合態 ,即處於量子態 、 的機率分別為 、 ,或者假設量子系統與環境處於糾纏態 ,只測量量子系統,並無法區分出這量子系統的物理狀態。
去相干時間尺度
對於宏觀物體而言,由於外在環境會有很多微觀物體會與之相互作用,量子去相干是非常快速的過程,說明為什麼無法觀察到量子干涉行為。約化密度矩陣的對角元素有效消失所需的時間稱為去相干時間。對於日常發生的宏觀過程,去相干時間非常短暫。[5][6] 特別而言,在物理學者給出的很多不同的去相干模型裏,不同的環境態 、 通常遵守指數衰變:
- ;
其中, 是時間, 是去相干時間尺度。
每一種去相干模型都有其特徵的去相干時間尺度。例如,在空間去相干模型裏,像空氣分子或光子一類的環境粒子,因為與處於不同位置疊加態的物體發生碰撞,而促成量子去相干,其環境態 、 的指數衰變的形式為
- ;
其中, 、 分別為物體質心的位置, 是散射常數。
對於處於位置疊加態的物體,去相干時間尺度 與質心距離 成平方反比:
- 。
假若 、 的質心距離越近,則環境粒子被位於這兩個位置的物體散射後的量子態越相似,即兩個對應的環境態的重疊部分越大,因此越困難分辨物體的位置,需要越多環境粒子來做分辨,所以去相干時間尺度越悠久;反過來說,假若 、 的質心距離越遠,越容易分辨物體在哪個位置,因此只需要幾個環境粒子就可以完成分辨,所以去相干時間尺度越短暫。當質心距離足夠遙遠,單獨散射就能夠解析物體的位置之時,去相干時間尺度會變得與質心距離無關,是總散射率的倒數:
- 。
假設在空間裏的物體,因為遭到外在環境裏的熱力學光子散射,而出現量子去相干,則其散射常數 通過理論分析以方程式表示為[1]:134
- ;
其中, 是物體尺寸(單位為cm), 是絕對溫度(單位為K)
假設是遭到空氣分子散射,則其散射常數 在正常氣壓為[1]:137
- 。
由此兩個方程式可知,散射常數與物體尺寸、絕對溫度有不同程度的相關。
以下列出在不同環境下,對於不同尺寸的物體,且量子干涉距離等於物體尺寸( ),去相干時間尺度 的估算數值(單位為秒):[1]:135
環境 | 灰塵顆粒(10-3cm) | 大型分子(10-6cm) |
---|---|---|
宇宙背景輻射 | 1 | 1024 |
室溫光子 | 10-18 | 106 |
最佳實驗室真空 | 10-14 | 10-2 |
正常氣壓的空氣 | 10-31 | 10-19 |
實驗觀察
量子去相干通常發生的很快,因此很難製成處於宏觀或介觀的疊加態物體。為了要實驗驗證量子去相干的效應、見證量子與經典之間的平滑邊界、檢驗與改良描述量子去相干的理論模型、找出任何不同於量子力學么正演化行為之處,必須完成以下幾件極具挑戰性的任務:[7]:223
- 製備出可分辨的幾個宏觀態或介觀態的量子疊加態。
- 設計一套證實量子疊加的方法。
- 量子去相干時間尺度必須足夠長久,這樣才能正確地觀測量子去相干。
- 設計一套監督量子去相干的方法。
腔量子電動力學實驗
1996年,在法國巴黎高等師範學校,物理學者塞爾日·阿羅什實驗團隊在腔量子電動力學實驗中,首先定量觀測到輻射場的介觀疊加態的相位相干性逐漸地因量子去相干而被摧毀。[8]
在這實驗裏,單獨芮得柏銣原子被傳輸通過含有輻射場的微波腔,而這芮得柏原子是處於兩個量子態所組成的疊加態,其中一個量子態會使得輻射場發生相移,因此促使輻射場從原先所處的非疊加態變為疊加態。由於光子散射於腔鏡子的瑕疵,輻射場會逐漸失去其相位相干性給環境。傳送第二個芮得柏原子通過微波腔,可以測量出輻射場的相位相干性。從分析在不同延遲時間下相位相干性的數據,可以實驗證實量子去相干效應。
因為研究能夠量度和操控個體量子系統的突破性實驗方法,阿羅什榮獲2012年諾貝爾物理學獎。[9]
量子干涉學實驗
2002年,奧地利維也納大學物理學者安東·蔡林格研究團隊發表論文報告觀察C70富勒烯干涉行為的結果。C70富勒烯的質量為840amu,直徑約為1nm,是由超過1000個微觀粒子所組成的相當複雜的物體,因此很不容易觀察到量子干涉效應,必須特別使用一種應用塔爾博特效應的干涉儀,稱為塔爾博特-勞澳干涉儀。碰撞去相干、熱力學去相干、振動微擾引起的退相位[註 1],這幾種效應會促使干涉圖案的可視性會逐漸衰減。量子去相干可以用可視性的衰減來量度,因此可視性的衰減表徵量子去相干效應。[7]:225-226
量子去相干與量子資訊科學
去相干現象對量子資訊科學的影響可大致分成兩大內容來說明:量子計算與量子通訊。我們知道在量子資訊科學中,量子系統的狀態含藏着資訊的意義。量子去相干會使我們所在意的系統出現資訊部份或完全喪失的結果,因此在量子計算上會造成計算結果出現誤差干擾;而在量子通訊上,一個環境充滿擾動的資訊傳遞通道(channel),在通道末端的收受者則有收到雜訊及錯誤訊息的可能,需要除錯系統如編碼方法之協助。
歷史
1935年,在普林斯頓高等研究院,阿爾伯特·愛因斯坦、博士後納森·羅森、研究員鮑里斯·波多爾斯基合作完成論文《物理實在的量子力學描述能否被認為是完備的?》(Can Quantum-Mechanical Description of Physical Reality be Considered Complete?),並且將這篇論文發表於5月份的《物理評論》[10]:303。這是最早探討量子糾纏的一篇論文。在這篇論文裏,他們詳細表述愛因斯坦-波多爾斯基-羅森悖論,試圖藉着一個思想實驗來論述量子力學的不完備性質[11]。他們並沒有更進一步研究量子糾纏的特性。
薛定諤仔細閱讀了愛因斯坦研究團隊的論文。稍後不久,他發表了一篇論文,對於「量子糾纏」這術語給予定義,並且研究探索相關概念。薛定諤體會到這概念的重要性,他表明,量子糾纏不只是量子力學的某個很有意思的性質,而是量子力學的特徵性質;量子糾纏在量子力學與經典思路之間做了一個完全切割[12]。為了進一步顯示量子力學的不完備性,薛定諤將量子力學應用到宏觀效應中,從而構思了著名的薛定諤貓思想實驗。這思想實驗明顯地呈現出量子至經典變遷的問題。[13][12]
在之後40年,量子至經典變遷的問題並未得到解答,主要有兩個原因,一是由於物理學者認為這論題不常出現於宏觀世界,並且沒有甚麼實際用途,二是由於物理學者並未發現環境會扮演那麼關鍵的角色促成了量子至經典變遷[1]:6-71970年,德國物理學者漢斯·澤賀發表了首篇關於量子去相干的論文,他強調,所有宏觀系統都是開放系統,都會強烈地與環境相互作用.它們不會遵守薛定諤方程式,因為,薛定諤方程式只適用於孤立系統[14]。這嶄新的量子去相干概念並沒有立刻吸引到學術界的注意。1981至1982年之間,波蘭物理學者沃積·祖瑞克在《物理評論D》發表了兩篇關鍵性論文,他指出經典系統自然而然地將內含的量子相干性洩漏至環境,因而導致量子去相干的後果,在處理波函數塌縮問題時,不能夠忽略這後果。祖瑞克的兩篇論文使得量子去相干成為熱門量子論題[15][16]。1984年,祖瑞克推導出估算量子去相干時間尺度的公式,可以很容易地對於一般量子系統進行相關估算[17]。隔年,澤賀與學生艾瑞曲·猶斯共同給出一個模型,能夠詳細地描述因環境粒子散射而產生量子去相干後果的全部過程。1991年,祖瑞克在《今日物理》發表了一篇論文,將量子去相干介紹給更廣泛學術界,從而引起更多物理學者注意到這學術領域的發展[6]。
參見
註釋
參考文獻
- ^ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 Maximilian A. Schlosshauer. Decoherence And the Quantum-To-Classical Transition. Springer Science & Business Media. 1 January 2007. ISBN 978-3-540-35773-5.
- ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Schlosshauer, Maximilian. Decoherence, the measurement problem, and interpretations of quantum mechanics. Reviews of Modern Physics. 2005, 76 (4): 1267–1305. Bibcode:2004RvMP...76.1267S. arXiv:quant-ph/0312059 . doi:10.1103/RevModPhys.76.1267.
- ^ Lidar, Daniel A.; Whaley, K. Birgitta. Decoherence-Free Subspaces and Subsystems. Benatti, F.; Floreanini, R. (編). Irreversible Quantum Dynamics. Springer Lecture Notes in Physics 622. Berlin. 2003: 83–120. arXiv:quant-ph/0301032 .
Decoherence is the phenomenon of non-unitary dynamics that arises as a consequence of coupling between a system and its environment.
- ^ Bernard d' Espagnat. Conceptual Foundations of Quantum Mechanics. Advanced Book Program, Perseus Books. 1999. ISBN 978-0-7382-0104-7.
- ^ Zurek, Wojciech. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics. 2003, 75 (3): 715 [2016-01-05]. doi:10.1103/RevModPhys.75.715. (原始內容存檔於2014-10-07).
- ^ 6.0 6.1 Zurek, Wojciech. Decoherence and the Transition from Quantum to Classical. Physics Today. October 1991, 44 (10): 36 [2016-01-11]. doi:10.1063/1.881293. (原始內容存檔 (PDF)於2019-07-01).
- ^ 7.0 7.1 7.2 Daniel Greenberger; Klaus Hentschel; Friedel Weinert. Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy. Springer Science & Business Media. 25 July 2009. ISBN 978-3-540-70626-7.
- ^ Serge Haroche; et al. Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement. Phys. Rev. Lett. 9 December 1996, 77 (24): 4887 [2016-01-06]. doi:10.1103/PhysRevLett.77.4887. (原始內容存檔於2020-08-17).
- ^ nobelpress. Press release - Particle control in a quantum world. Royal Swedish Academy of Sciences. [9 October 2012]. (原始內容存檔於2012-10-11).
- ^ Kumar, Manjit. Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality Reprint edition. W. W. Norton & Company. 2011. ISBN 978-0393339888.
- ^ Einstein, A; B Podolsky; N Rosen. Can Quantum-Mechanical Description of Physical Reality be Considered Complete? (PDF). Physical Review. 15 May 1935, 47 (10): 777–780 [2016-01-13]. Bibcode:1935PhRv...47..777E. doi:10.1103/PhysRev.47.777. (原始內容存檔 (PDF)於2006-03-14).
- ^ 12.0 12.1 Schrödinger, Erwin. Die gegenwärtige Situation in der Quantenmechanik (The present situation in quantum mechanics). Naturwissenschaften. November 1935.
- ^ Trimmer, John. The Present Situation in Quantum Mechanics: A Translation of Schrödinger's "Cat Paradox" Paper. Proceedings of the American Philosophical Society (American Philosophical Society). 10 October 1980, 124 (5): pp. 323–338. JSTOR 986572.
- ^ Hans, Zeh. On the interpretation of measurement in quantum theory. Foundations of Physics. March 1970, 1 (1): 69–76. doi:10.1007/BF00708656.
- ^ Zurek, Wojciech. Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse?. Physics Review D. 15 September 1981, 24 (6): 1516–1525. doi:10.1103/PhysRevD.24.1516.
- ^ Zurek, Wojciech. Environment-Induced Superselection Rules. Physics Review D. 15 October 1982, 26 (8): 1862–1880. doi:10.1103/PhysRevD.26.1862.
- ^ Zurek, Wojciech. Reduction of the Wavepacket: How Long Does it Take?. 2003. arXiv:quant-ph/0302044v1
|class=
被忽略 (幫助).
延伸閱讀
- Mario Castagnino, Sebastian Fortin, Roberto Laura and Olimpia Lombardi, A general theoretical framework for decoherence in open and closed systems, Classical and Quantum Gravity, 25, pp. 154002–154013, (2008).