本條目中,向量純量分別用粗體斜體顯示。例如,位置向量通常用 表示;而其大小則用 來表示。

在三維空間裏,平面波(plane wave)是一種波動,其波陣面(在任何時刻,波相位相等的每一點所形成的曲面)是相互平行的平面。平面波的傳播方向垂直於波前。假若平面波的振幅不是常數,例如,振幅是位置的函數,則稱此種平面波為「非均勻平面波」。[1]:24-27

一個平面波的波前行進於空間。

加以延伸,平面波這術語時常用來形容,在空間的一個局部區域裏,近似於平面波的波動。例如,一個局部區域波源,像發射無線電波天線,所發射出的電磁波,在遠場區英語far-field region可以近似為平面波。等價地說,對於在一個均勻介質內,波的傳播距離超長於波長的案例,在幾何光學的正確極限內,射線區域性地對應於近似平面波。

數學表述

 
在時間等於零時,正相移導致波向左移位。
 
隨着t增加,波向右移動,給定點x處的值振盪正弦波
 
3D平面波的動畫。 每種顏色表示波的不同的相位

數學來表述,波動方程式

 

其中,  是描述波動的函數 拉普拉斯算符  是波動傳播的速度,  是位置,  是時間。

描述平面波的函數  波動方程式的一種解答:

 

平面波   的形式為:

 

其中, 虛數單位 波向量 角頻率  是複值的振幅純量。

複函數的實部,則可以得到其物理意義。

 

注意到在任意時刻   ,波相位不變的曲面滿足方程式

 

或者,

 

其中,   是任意常數。

所有滿足這方程式的   形成一個與   相互垂直的平面,平行波的波前就是這種平面,所有的波前都與   相互垂直,都相互平行。

對於向量的波動方程式,像描述在彈性固體內的機械波電磁波的波動方程式:

 
 

其中, 電場 磁場;

解答也很類似:

 

其中,  是複值的振幅向量。

橫波的振幅向量垂直於波向量,像傳播於均向性介質的電磁波。縱波的振幅向量平行於波向量,像傳播於氣體或液體的聲波

傳播於某介質內,角頻率與波向量之間的關係,可以以函數   表達,稱為介質的色散關係。對於這介質,波的相速度

 

群速度

 

參閱

參考文獻

  1. ^ Hecht, Eugene, Optics 4th, United States of America: Addison Wesley, 2002, ISBN 0-8053-8566-5 (英語) 

  • J. D. Jackson, Classical Electrodynamics (Wiley: New York, 1998 )。