四维矢量



本条目中,矢量标量分别用粗体斜体显示。例如,位置矢量通常用 表示;而其大小则用 来表示。四维矢量用加有标号的斜体显示。例如,。为了避免歧意,四维矢量的斜体与标号之间不会有括号。例如,表示平方;而的第二个分量。

相对论里,四维矢量four-vector)是实值四维矢量空间里的矢量。这四维矢量空间称为闵可夫斯基时空。四维矢量的分量分别为在某个时间点与三维空间点的四个数量。在闵可夫斯基时空内的任何一点,都代表一个“事件”,可以用四维矢量表示。从任意惯性参考系观察某事件所获得的四维矢量,通过洛伦兹变换,可以变换为从其它惯性参考系观察该事件所获得的四维矢量。

本文章只思考在狭义相对论范围内的四维矢量,尽管四维矢量的概念延伸至广义相对论。在本文章内写出的一些结果,必须加以修改,才能在广义相对论范围内成立。

数学性质

 
在闵可夫斯基时空里,不同惯性参考系的坐标轴

闵可夫斯基时空内的任何一点,都可以用四维矢量(一组标准基底的四个坐标)   来表示;其中,上标   标记时空的维数次序。称这四维矢量为“坐标四维矢量”,又称“四维坐标”,定义为

 

其中, 光速  是时间,  是位置的三维直角坐标

为了确使每一个坐标的单位都是长度单位,定义  

“四维位移”定义为两个事件之间的矢量差。在时空图里,四维位移可以用从第一个事件指到第二个事件的箭矢来表示。当矢量的尾部是坐标系的原点时,位移就是位置。四维位移   表示为

 

带有上标的四维矢量   称为反变矢量,其分量标记为

 

假若,标号是下标,则称四维矢量  协变矢量。其分量标记为

 

在这里,闵可夫斯基度规   被设定为

 

采用爱因斯坦求和约定,则四维矢量的协变坐标和反变坐标之间的关系为

 

闵可夫斯基度规与它的“共轭度规张量”   相等:

 

洛伦兹变换

给予两个惯性参考系    ;相对于参考系  ,参考系   以速度   移动。对于这两个参考系,相关的“洛伦兹变换矩阵”  

 

其中, 洛伦兹因子 是“贝塔因子”。

对于这两个参考系    ,假设一个事件的四维坐标分别为    。那么,这两个四维坐标之间的关系为

 
 

其中,  反矩阵

 

将这两个四维坐标之间的关系式合并为一,则可得到

 

因此,可以找到洛伦兹变换矩阵的一个特性:

 

其中, 克罗内克函数

另外一个很有用的特性为

 

给定一个事件在某惯性参考系的四维坐标,通过洛伦兹变换,就可计算出这事件在另外一个惯性参考系的四维坐标。这是个很有用的物理性质。当研究物理现象时,所涉及的四维矢量,最好都能够具有这有用的性质。这样,可以使得数学分析更加精致犀利。以方程表示,对于两个参考系   ,具有这种有用性质的四维矢量    满足

 
 

在计算这四维矢量对于时间的导数时,若能选择固有时为时间变数,则求得的四维矢量仍旧具有这有用的性质。因为,固有时乃是个不变量;改变惯性参考系不会改变不变量。

假设一个物体运动于闵可夫斯基时空。在“实验室参考系”里,物体运动的速度随着时间改变。对于每瞬时刻,选择与物体同样运动的惯性参考系,称为“瞬间共动参考系”(momentarily comoving reference frame)。在这瞬间共动参考系里,物体的速度为零,因此,这参考系也是物体的“瞬间静止参考系”。随着物体不断地改变运动速度与方向,新的惯性参考系也会不断地改换为瞬间共动参考系。[1]:41-42随着这些不断改换的瞬间同行坐标系所测得的时间即为固有时,标记为   。这就好像给物体挂戴一只手表,随着物体的运动,手表也会做同样的运动,而手表所纪录的时间就是固有时。

这物体的运动可以用一条世界线   来描述。由于时间膨胀,发生于物体的两个本地事件的微小固有时间隔   与从别的惯性参考系   所观测到的微小时间间隔   的关系为

 

所以,固有时   对于其它时间   的导数为

 

闵可夫斯基内积

在闵可夫斯基空间里,两个四维矢量   内积,称为闵可夫斯基内积,以方程表示为:

 

由于这内积并不具正定性,即

 

可能会是负数;而欧几里得内积一定不是负数。

许多学者喜欢使用相反正负号的  

 

这样,   的内积改变为

 

其它相联的量值也会因而改变正负号,但这不会改变系统的物理性质。

从参考系   改换至另一参考系     的内积为

 

所以,在闵可夫斯基时空内,两个四维矢量的内积是个不变量[1]:44-46

 

四维矢量可以分类为类时类空,或类光零矢量):

类时矢量: 
类空矢量: 
类光矢量: 

动力学实例

四维速度

设想一个物体运动于闵可夫斯基时空,则其世界线的任意事件   的四维速度   定义为[1]:46-48

 

其中,  是三维速度,或经典速度矢量。

  的空间部分与经典速度   的关系为

 

四维速度与自己的内积等于光速平方,是一个不变量:

 

在物体的瞬间共动参考系里,物体的速度为零,因此,四维速度为

 

其方向与瞬间共动参考系的第零个基底矢量   同向;

其中,  表示从瞬间共动参考系观察得到的数据。

四维加速度

四维加速度   定义为 [1]:46-48

 

经过一番运算,可以得到洛伦兹因子对于时间的导数:

 

其中, 经典加速度

所以,四维加速度   可以表示为

 

由于   是个常数,四维加速度与四维速度相互正交;也就是说,四维速度与四维加速度的闵可夫斯基内积等于零:

 

对于每一条世界线,这计算结果都成立。

注意到在瞬间共动参考系里,   只有时间分量不等于零,所以,   为的时间分量为零:

 

四维动量

一个静止质量  的粒子的四维动量   定义为

 

经典动量   定义为

 

其中,  是相对论性质量。

所以,  的空间部分等于经典动量  

 

四维力

作用于粒子的四维力定义为粒子的四维动量对于固有时的导数:

 

提出四维动量内的静止质量因子,即可发觉四维力就是静止质量乘以四维加速度:

 

因此,四维力可以表示为

 

经典力   定义为

 

所以, 的空间部分等于  

 

物理内涵

在四维矢量的表述里,存在着许多能量与物质之间的关系。从这些特别关系,可以显示出这表述的功能与精致。

质能方程

假设,在微小时间间隔   ,一个运动于时空的粒子,感受到作用力   的施加,而这粒子的微小位移为   。那么,作用力   对于这粒子所做的微小机械功  

 

因此,这粒子的动能的改变  

 

粒子的动能   对于时间的导数为

 

将前面经典力和经典速度的公式带入,可以得到

 

这公式的反微分为

 

当粒子静止时,动能等于零。所以,

 

这公式的右手边第二个项目就是静止能量   。动能   加上静止能量   等于总能量  

 

再加简化,以相对论性质量   表示:

 

这方程称为质能方程

能量-动量关系式

使用质能方程   ,四维动量可以表示为

 

四维动量与自己的内积为

 

改以四维速度来计算内积:

 

所以,能量-动量关系式为

 

电磁学实例

四维电流密度

电磁学里,四维电流密度   是一个四维矢量,定义为

 

其中, 电荷密度  是三维电流密度

在瞬间共动参考系所观测到的电荷密度,称为固有电荷密度   。四维电流密度与四维速度的关系为

 

电荷守恒定律能以三维矢量表示为

 

这定律也能以四维电流密度表示为

 

从这方程,可以推论四维电流密度的四维散度等于零。

电磁四维势

电磁四维势是由电势  矢量势   共同形成的,定义为

 

黎曼-索末菲方程表示电磁四维势与四维电流密度之间的关系[2]

  ;

其中, 磁常数 达朗贝尔算符,又称为四维拉普拉斯算符

四维频率和四维波矢量

一个平面电磁波四维频率   定义为

 

其中,  是电磁波的频率  是朝着电磁波传播方向的单位矢量。

四维频率与自己的内积永远等于零:

 

一个近单色光波包的波动性质可以用四维波矢量   来描述:

 

其中,  是三维波矢量

四维波矢量与四维频率之间的关系为

 

参阅

参考文献

  1. ^ 1.0 1.1 1.2 1.3 Bernard Schutz. A First Course in General Relativity. Cambridge University Press. 14 May 2009. ISBN 978-0-521-88705-2. 
  2. ^ Carver A. Mead. Collective Electrodynamics: Quantum Foundations of Electromagnetism. MIT Press. 2002: 37–38. ISBN 9780262632607.