地表对气候的影响

地表对气候的影响(英语:Land surface effects on climate)所涵盖的范围广泛,而且因地区不同而表现各异。森林砍伐和滥用自然景观发挥有重要的作用。其中一些地表环境变化所产生的影响与全球暖化效应产生的相似。[1][2][3]

森林砍伐的影响

可影响气候的地表变化主要有森林砍伐(特别是发生在热带雨林),[4][5][6][7][8]以及因过度放牧或是缺乏放牧而破坏草地生态系统荒漠和干燥疏灌丛。自然景观发生变化之后通常会降低蒸发散作用,大气中得到的水蒸气不足,而限制云层形成,降雨无从发生。 同侪审查杂志《大气化学与物理学英语Atmospheric Chemistry and Physics》提出,森林地区的蒸发率超过海洋,其形成低压区,形成大气中的水分循环英语Moisture recycling作用,而促进风暴和降雨发生。[9]美国生物科学研究所英语American Institute of Biological Sciences在2009年发表一篇类似的论文来支持此一概念。[10]此外,随着森林砍伐和/或草地生态系统遭受破坏,植物收集(即于其上凝结)的露水数量会大幅降低。 [11][12][13]所有这些因素都是导致​​前述地区沙漠化的罪魁祸首。

在学术期刊《科学》杂志上发表的一篇文章中提到,亚马逊盆地之中的25-50%降雨来自森林,如果森林砍伐达到30-40%的程度,这个盆地的大部分地区将会进入永久性干旱气候。[14]

对于永续农业主义者而言,土地-大气之间相互反馈的概念很常见,例如日本自然农法提倡者福冈正信,在其1975年出版的著作《一根稻草的革命》中说:“雨水的来源是地面,而非空中。”[15][16]

森林砍伐和草地变成沙漠也会导致区域气候变冷,原因为地表在白天有强大反照率(阳光受到裸露地面的反射),以及由于缺乏植被和湿度,热量无法留住,会在夜间迅速被辐射进入大气中。[17]

林地复育保护性放牧英语conservation grazing整体农业管理英语Holistic management (agriculture),以及在旱地建设雨水扑满关键线设计英语keyline design,都是可用来防止或减轻干旱影响的方法。[18]

山岭气象效应

地形推升

气团被迫沿着上升地势,从低海拔上升到高海拔时,就会发生地形推升的作用。气团上升到某种高度,会迅速经绝热膨胀而冷却,将相对湿度提高到100%,而形成云,在适当的条件下就会降雨。

 
青藏高原是典型的雨影区,因喜马拉雅山脉阻挡来自印度洋湿气而形成。

雨影

雨影指的是山区背风面的干燥区域。山脉阻挡降雨系统的通道,并在山的背面留下一片干燥的“阴影(区域)”。盛行的风把潮湿的空气吹向山顶,在穿过山顶之前会凝结而降下。与地形推升相反的作用是包含甚少水分的空气越过山顶后向山后移动,形成被称为“雨影”的较为干燥的区域。

 
当欧洲有极低气压时,会吸引夹带地中海湿气的空气攀越阿尔卑斯山进入,形成焚风。此为NASA提供在2000年进入欧洲的飓风卫星图。
 
西班牙加那利群岛最西北端的火山岛 - 拉帕尔马岛背风处所观察到由大西洋潮湿空气,往东越过山顶而形成的焚风云英语Föhn cloud



焚风

焚风(英语:foehn wind,或拼写为(英语:föhn wind)是种干燥、温暖的下坡风,发生在山脉的背风处(下风侧)。

焚风是种雨影风,经绝热压缩而变暖的空气所引起,空气中的大部分水分已在迎风坡降下(见前述地形推升)。由于湿空气和干空气的绝热气温垂直递减率不同,在同等高度,背风坡的空气变得比迎风坡的更暖和。焚风可在短短几分钟内把温度升高多达14°C(25°F)的程度。[19]来自地中海的潮湿空气越过阿尔卑斯山后成为焚风,在山后的中欧因而享有较温暖的气候。

参见

参考文献

  1. ^ The Effect of Land Masses on Climate. PBS LearningMedia. [2016-05-17]. (原始内容存档于2021-01-25). 
  2. ^ How does land-use change affect climate change?. [2016-05-17]. (原始内容存档于2016-06-09). 
  3. ^ Carleton, Thomas Loveland, Rezaul Mahmood, Toral Patel-Weynand, Krista Karstensen, Kari Beckendorf, Norman Bliss, and Andrew. USGS Open-File Report 2012–1155: National Climate Assessment Technical Report on the Impacts of Climate and Land Use and Land Cover Change. pubs.usgs.gov. [2016-05-17]. (原始内容存档于2018-08-21). 
  4. ^ Zemp, Delphine; Schleussner, Carl-Friedrich; Barbosa, Henrique; Sampaio, Gilvan; Hirota, Marina; Rammig, Anja. Cascading effects of deforestation and drying trends on reduced forest resilience in the Amazon region. 2015-04-12 [2016-05-16]. (原始内容存档于2021-04-17) –通过ResearchGate. 
  5. ^ Zemp, Delphine; Schleussner, Carl-Friedrich; Barbosa, Henrique; Sampaio, Gilvan; Hirota, Marina; Rammig, Anja. Cascading effects of deforestation and drying trends on reduced forest resilience in the Amazon region. EGU General Assembly Conference Abstracts. 2015, 17: 15338. Bibcode:2015EGUGA..1715338Z. 
  6. ^ Robbins, Jim. Opinion - Deforestation and Drought. The New York Times. 2015-10-09 [2017-03-02]. (原始内容存档于2021-04-11). 
  7. ^ Tropical drying trends in global warming models and observations. UCLA Atmospheric and Oceanic Sciences. [2016-05-13]. (原始内容存档于2020-02-25). 
  8. ^ Niiler, Eric. Climate Change Is Drying Up Islands. Discovery News. 2016-04-11 [2016-05-13]. (原始内容存档于2016-05-07). 
  9. ^ A. M. Makarieva; V. G. Gorshkov; D. Sheil; A. D. Nobre; B.-L. Li. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics (PDF). Atmos. Chem. Phys. 2013, 13 (2): 1039–1056 [2016-05-14]. Bibcode:2013ACP....13.1039M. arXiv:1004.0355 . doi:10.5194/acp-13-1039-2013 . (原始内容存档 (PDF)于2020-07-30). 
  10. ^ Sheil, Douglas & Daniel Murdiyarso. How forests attract rain: an examination of a new hypothesis (PDF). BioScience. 2009, 59 (4): 341+. S2CID 85905766. doi:10.1525/bio.2009.59.4.12. (原始内容 (PDF)存档于2013-03-19). 
  11. ^ Staniford, Stuart. A Hypothesis about Global Drying. Early Warning. 2011-12-29 [2016-05-13]. (原始内容存档于2017-08-29). 
  12. ^ Huge parts of world are drying up: Land 'evapotranspiration' taking unexpected turn. ScienceDaily. 2010-10-11 [2016-05-13]. (原始内容存档于2020-11-11). 
  13. ^ Peter Greve; Boris Orlowsky; Brigitte Mueller; Justin Sheffield; Markus Reichstein & Sonia I. Seneviratne. Global assessment of trends in wetting and drying over land. Nature Geoscience. 2014, 7 (10): 716–721. Bibcode:2014NatGe...7..716G. doi:10.1038/ngeo2247. 
  14. ^ Malhi, Yadvinder; Roberts, J. Timmons; Betts, Richard A.; Killeen, Timothy J.; Li, Wenhong; Nobre, Carlos A. Climate Change, Deforestation, and the Fate of the Amazon. Science. 2008-01-11, 319 (5860): 169–172 [2023-10-02]. Bibcode:2008Sci...319..169M. ISSN 0036-8075. PMID 18048654. S2CID 33966731. doi:10.1126/science.1146961. (原始内容存档于2023-04-10) (英语). 
  15. ^ Rain comes from the ground not the sky, Fukuoka (masanobu fukuoka forum at permies). www.permies.com. [2016-05-16]. (原始内容存档于2016-09-23). 
  16. ^ 1978 [1975 Sep.] – The One-Straw Revolution: An Introduction to Natural Farming, translators Chris Pearce, Tsune Kurosawa and Larry Korn, Rodale Press.
  17. ^ Deforestation causes cooling, study shows. PhysOrg. 2011-11-16 [2016-05-13]. (原始内容存档于2021-02-18). 
  18. ^ Peter Westerveld. VIDEO: Reversing climate change is all very simple, says Peter Westerveld (YouTube). TEDxAmsterdam. 2010-12-08 [2023-10-02]. (原始内容存档于2016-08-03). 
  19. ^ South Dakota Weather History and Trivia for January. National Weather Service Weather Forecast Office. See January 22 entry. 2006-02-08 [2016-11-13]. (原始内容存档于2014 -12-19). 

参考文献