质子化氧气
化合物
质子化氧气是一种离子,分子式为HO+
2。含氢物质燃烧时会生成这个离子。它存在于电离层,以及含有氧和氢的等离子体中。[2]在超强酸中,O2可能会先产生质子化氧气,再将物质氧化。
质子化氧气 | |
---|---|
IUPAC名 oxooxidanium | |
别名 | Hydroperoxy cation; Hydridodioxygen(1+); Dioxidenium; dioxidanylium |
识别 | |
CAS号 | 71722-67-3 [1] |
PubChem | 5460577 |
ChemSpider | 4574078 |
SMILES |
|
Gmelin | 508 |
ChEBI | 29793 |
性质 | |
化学式 | HO+ 2 |
摩尔质量 | 33.005 g·mol⁻¹ |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
重要性
在检测太空中的氧气时,质子化氧气很有帮助。由于地球大气层充满O2,人们在地上无法观察到空间物体的光谱。然而,HO+
2应该更容易被发现。[4]
形成
- O+•
2 + H2 → HO+
2 + H•
- O2 + H+
3 → HO+
2 + H2
当原子氢在放电过程中产生,然后被氧气迅速冷却并在固体氖凝固时,它会产生几种活性离子和分子,包括HO2(超氧化氢)、HOHOH−、H2O(HO)、HOHO−和HO+
2。[6]这个反应还会生成过氧化氢(H2O2)和四氧化氢(H2O4)。[7]
反应
已知存在氦络合物(He–O2H+)。[8]
HO+
2可以与氢气迅速反应:[9]
- HO+
2 + H2 → O2 + H+
3
HO+
2也会与氮气和水反应:[9]
- HO+
2 + H2O → O2 + H3O+
相关化合物
质子化氧气二聚体(HO+
4)的能量比质子化氧气的低。[3]
参考文献
- ^ HO2+. webbook.nist.gov. [2022-12-04]. (原始内容存档于2021-10-19) (英语).
- ^ Robbe, J.M.; Monnerville, M.; Chambaud, G.; Rosmus, P.; Knowles, P.J. Theoretical spectroscopic data of the HO+
2 ion. Chemical Physics. January 2000, 252 (1–2): 9–16. Bibcode:2000CP....252....9R. doi:10.1016/S0301-0104(99)00350-X. - ^ 3.0 3.1 3.2 Xavier, George D.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón. Communication: study of O4H+: A tracer molecule in the interstellar medium?. The Journal of Chemical Physics. 28 August 2014, 141 (8): 081101. PMID 25172995. doi:10.1063/1.4894068.
- ^ Widicus Weaver, Susanna L.; Woon, David E.; Ruscic, Branko; McCall, Benjamin J. Is HO+
2 a Detectable Interstellar Molecule?. The Astrophysical Journal. 20 May 2009, 697 (1): 601–609. Bibcode:2009ApJ...697..601W. doi:10.1088/0004-637X/697/1/601 . - ^ Ajello, J. M. Formation of HO+
2 by reaction of metastable O+
2 ions with H2. The Journal of Chemical Physics. 1974, 60 (4): 1211–1213. Bibcode:1974JChPh..60.1211A. doi:10.1063/1.1681184. - ^ Jacox, Marilyn E.; Thompson, Warren E. Infrared Spectra of Products of the Reaction of H Atoms with O2 Trapped in Solid Neon: HO2, HO+
2, HOHOH−, and H2O(HO). The Journal of Physical Chemistry A. 24 December 2012, 117 (39): 9380–9390. PMID 23215001. doi:10.1021/jp310849s. - ^ Levanov, A. V.; Isaikina, O. Ya.; Antipenko, E. E.; Lunin, V. V. Mechanism of the formation of hydrogen tetroxide and peroxide via low-temperature interaction between hydrogen atoms and molecular oxygen. Russian Journal of Physical Chemistry A. 5 August 2014, 88 (9): 1488–1492. Bibcode:2014RJPCA..88.1488L. S2CID 97672680. doi:10.1134/S0036024414090222.
- ^ Kohguchi, Hiroshi; Jusko, Pavol; Yamada, Koichi M. T.; Schlemmer, Stephan; Asvany, Oskar. High-resolution infrared spectroscopy of O2H+ in a cryogenic ion trap. The Journal of Chemical Physics. 14 April 2018, 148 (14): 144303. Bibcode:2018JChPh.148n4303K. PMID 29655341. doi:10.1063/1.5023633.
- ^ 9.0 9.1 Kluge, Lars; Gärtner, Sabrina; Brünken, Sandra; Asvany, Oskar; Gerlich, Dieter; Schlemmer, Stephan. Transfer of a proton between H2 and O2. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 13 November 2012, 370 (1978): 5041–5054. Bibcode:2012RSPTA.370.5041K. PMID 23028152. doi:10.1098/rsta.2012.0170 .