用户:Vhyun625/大脑中的语言处理
语言处理是指人类使用文字交流思想和感情的方式,以及这种交流方式是如何被处理和被理解的。语言处理是人类独有的能力,即使是人类最亲近的灵长类动物也不具备相同的语法理解或语法系统。 [1]
在整个 20 世纪中,大脑语言处理的主要模型[2]是Geschwind-Lichteim-Wernicke 模型,该模型主要建立于脑损伤患者的研究成果之上。在人们改进了应用于猴子和人类大脑研究的脑皮质内电生理记录技术后,多种非侵入性技术相继被发明出来,包括:fMRI 、PET、MEG 和 EEG 等。这时,人们发现了双听觉通路[3] [4],并提出了双流假说模型。根据该模型,听觉皮质会以两种通路方式联结到额叶,两条通路各负责不同的语言元素。听觉腹侧流(auditory ventral stream,AVS)通路负责声音识别,因此被称为内容通路(what pathway)。人类和非人灵长类动物的听觉背侧流(auditory dorsal stream,ADS)则负责声音定位,因此被称为空间通路(where pathway)。在人类左半脑的空间通路中,它还与语音产生、语音重复、唇读、语音工作记忆和长期记忆有关。根据语言进化的“从空间至内容”模型,听觉背侧流的功能如此广泛,是因为每种功能揭示了语言进化的不同阶段。
听觉流会在听神经处一分为二,其中前分支会进入脑干的耳蜗核前侧,形成听觉腹侧流,而后分支会进入耳蜗核背侧和后腹侧,形成听觉背侧流。 [5]
早期的神经语言学模型
目前的神经语言学模型
解剖学
在过去的二十年内,人们对于灵长类动物声音的神经处理有了更深入的理解。通过早期记录猴子听觉皮质的神经讯号[6] [7] ,晚期的组织学染色[8] [9] [10]以及fMRI扫描的成果,[11]在初级听觉皮质中发现了 3 个听觉区域,此外周围还有 9 个相关的听觉区域(图 1 左上角)。解剖学追踪以及损伤研究也揭示了听觉区域前后侧有分离,前部初级听区(区域 R-RT)投射到前联想听区(区域 AL-RTL),而后部初级听区(区域 A1)投射到后联想听觉场(区域 CL-CM)。 [8] [12] [13] [14]最近,积累的证据表明人类和猴子的听觉场之间存在同源性。在人类中,组织学染色研究揭示了Heschl 回的初级听觉区域中有两个独立的听觉区域, [15] [16]并通过用高分辨率fMRI绘制人类初级听觉区域的音调组织并将其与在猴子初级听觉场,人类前初级听觉场和猴子区域R(在人类中表示为区域hR)和人类后初级听觉场和猴子区域A1(在人类中表示为区域hA1)之间建立了同源性。 [17] [18] [19] [20] [21]来自人类听觉皮层的皮层内记录进一步证明了与猴子听觉皮层相似的连接模式。从听觉皮层(颞上平面)的表面记录报告,Heschl 前回(hR 区)主要投射到颞上回中前(mSTG-aSTG)和 Heschl 后回(hA1 区)主要投射到颞上回 (pSTG) 和颞平面(PT 区;图 1 右上角)。 [22] [23]与从 hR 区域到 aSTG 和 hA1 到 pSTG 的连接一致的是对声音识别受损(听觉失认症)患者的fMRI研究,显示 hR 和 aSTG 区域的双侧激活减少,但 mSTG 中的激活幸免- pSTG。 [24]这种连接模式也得到了一项研究的证实,该研究记录了听觉皮层侧面的激活,并报告了在听声音时 pSTG 和 mSTG-aSTG 中同时不重叠的激活簇。 [25]
参考
[[Category:語言習得]] [[Category:神經科學]] [[Category:心理語言學]]
- ^ Seidenberg MS, Petitto LA. Communication, symbolic communication, and language: Comment on Savage-Rumbaugh, McDonald, Sevcik, Hopkins, and Rupert (1986). Journal of Experimental Psychology: General. 1987, 116 (3): 279–287. doi:10.1037/0096-3445.116.3.279.
- ^ Geschwind N. Disconnexion syndromes in animals and man. I. review. Brain. June 1965, 88 (2): 237–94. PMID 5318481. doi:10.1093/brain/88.2.237 .
- ^ Hickok G, Poeppel D. The cortical organization of speech processing. review. Nature Reviews. Neuroscience. May 2007, 8 (5): 393–402. PMID 17431404. S2CID 6199399. doi:10.1038/nrn2113.
- ^ Gow DW. The cortical organization of lexical knowledge: a dual lexicon model of spoken language processing. review. Brain and Language. June 2012, 121 (3): 273–88. PMC 3348354 . PMID 22498237. doi:10.1016/j.bandl.2012.03.005.
- ^ Pickles JO. Handbook of Clinical Neurology 129. 2015: 3–25. ISBN 978-0-444-62630-1. PMID 25726260. doi:10.1016/B978-0-444-62630-1.00001-9.
- ^ Bendor D, Wang X. Cortical representations of pitch in monkeys and humans. Current Opinion in Neurobiology. August 2006, 16 (4): 391–9. PMC 4325365 . PMID 16842992. doi:10.1016/j.conb.2006.07.001.
- ^ Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science. April 1995, 268 (5207): 111–4. Bibcode:1995Sci...268..111R. PMID 7701330. doi:10.1126/science.7701330.
- ^ 8.0 8.1 de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. The Journal of Comparative Neurology. May 2006, 496 (1): 27–71. PMID 16528722. S2CID 38393074. doi:10.1002/cne.20923.
- ^ de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. Cortical connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anatomical Record. May 2012, 295 (5): 800–21. PMC 3379817 . PMID 22461313. doi:10.1002/ar.22451.
- ^ Kaas JH, Hackett TA. Subdivisions of auditory cortex and processing streams in primates. Proceedings of the National Academy of Sciences of the United States of America. October 2000, 97 (22): 11793–9. Bibcode:2000PNAS...9711793K. PMC 34351 . PMID 11050211. doi:10.1073/pnas.97.22.11793 .
- ^ Petkov CI, Kayser C, Augath M, Logothetis NK. Functional imaging reveals numerous fields in the monkey auditory cortex. PLOS Biology. July 2006, 4 (7): e215. PMC 1479693 . PMID 16774452. doi:10.1371/journal.pbio.0040215.
- ^ Morel A, Garraghty PE, Kaas JH. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. The Journal of Comparative Neurology. September 1993, 335 (3): 437–59. PMID 7693772. S2CID 22872232. doi:10.1002/cne.903350312.
- ^ Rauschecker JP, Tian B. Mechanisms and streams for processing of "what" and "where" in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America. October 2000, 97 (22): 11800–6. Bibcode:2000PNAS...9711800R. PMC 34352 . PMID 11050212. doi:10.1073/pnas.97.22.11800 .
- ^ Rauschecker JP, Tian B, Pons T, Mishkin M. Serial and parallel processing in rhesus monkey auditory cortex. The Journal of Comparative Neurology. May 1997, 382 (1): 89–103. PMID 9136813. doi:10.1002/(sici)1096-9861(19970526)382:1<89::aid-cne6>3.3.co;2-y.
- ^ Sweet RA, Dorph-Petersen KA, Lewis DA. Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. The Journal of Comparative Neurology. October 2005, 491 (3): 270–89. PMID 16134138. S2CID 40822276. doi:10.1002/cne.20702.
- ^ Wallace MN, Johnston PW, Palmer AR. Histochemical identification of cortical areas in the auditory region of the human brain. Experimental Brain Research. April 2002, 143 (4): 499–508. PMID 11914796. S2CID 24211906. doi:10.1007/s00221-002-1014-z.
- ^ Da Costa S, van der Zwaag W, Marques JP, Frackowiak RS, Clarke S, Saenz M. Human primary auditory cortex follows the shape of Heschl's gyrus. The Journal of Neuroscience. October 2011, 31 (40): 14067–75. PMC 6623669 . PMID 21976491. doi:10.1523/jneurosci.2000-11.2011 .
- ^ Humphries C, Liebenthal E, Binder JR. Tonotopic organization of human auditory cortex. NeuroImage. April 2010, 50 (3): 1202–11. PMC 2830355 . PMID 20096790. doi:10.1016/j.neuroimage.2010.01.046.
- ^ Langers DR, van Dijk P. Mapping the tonotopic organization in human auditory cortex with minimally salient acoustic stimulation. Cerebral Cortex. September 2012, 22 (9): 2024–38. PMC 3412441 . PMID 21980020. doi:10.1093/cercor/bhr282.
- ^ Striem-Amit E, Hertz U, Amedi A. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI. PLOS ONE. March 2011, 6 (3): e17832. Bibcode:2011PLoSO...617832S. PMC 3063163 . PMID 21448274. doi:10.1371/journal.pone.0017832 .
- ^ Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC, Rinne T, Kang X. Functional properties of human auditory cortical fields. Frontiers in Systems Neuroscience. 2010, 4: 155. PMC 3001989 . PMID 21160558. doi:10.3389/fnsys.2010.00155 .
- ^ Gourévitch B, Le Bouquin Jeannès R, Faucon G, Liégeois-Chauvel C. Temporal envelope processing in the human auditory cortex: response and interconnections of auditory cortical areas (PDF). Hearing Research. March 2008, 237 (1–2): 1–18. PMID 18255243. S2CID 15271578. doi:10.1016/j.heares.2007.12.003.
- ^ Guéguin M, Le Bouquin-Jeannès R, Faucon G, Chauvel P, Liégeois-Chauvel C. Evidence of functional connectivity between auditory cortical areas revealed by amplitude modulation sound processing. Cerebral Cortex. February 2007, 17 (2): 304–13. PMC 2111045 . PMID 16514106. doi:10.1093/cercor/bhj148.
- ^ Poliva O, Bestelmeyer PE, Hall M, Bultitude JH, Koller K, Rafal RD. Functional Mapping of the Human Auditory Cortex: fMRI Investigation of a Patient with Auditory Agnosia from Trauma to the Inferior Colliculus (PDF). Cognitive and Behavioral Neurology. September 2015, 28 (3): 160–80. PMID 26413744. S2CID 913296. doi:10.1097/wnn.0000000000000072.
- ^ Chang EF, Edwards E, Nagarajan SS, Fogelson N, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, Knight RT. Cortical spatio-temporal dynamics underlying phonological target detection in humans. Journal of Cognitive Neuroscience. June 2011, 23 (6): 1437–46. PMC 3895406 . PMID 20465359. doi:10.1162/jocn.2010.21466.