安德里卡猜想

安德里卡猜想(Andrica's conjecture)是关于质数间的间隙的猜想[1],以罗马尼亚数学家多林·安德里卡西班牙语Dorin Andrica的名字命名。

(a) 对最初100个质数的值
(b) 对最初200个质数的值
(c) 对最初500个质数的值
安德里卡猜想对最初(a)100个、(b)200个和(c)500个质数的图像化证明。猜想的内容指称,总小于一。

该猜想认为,对于任意的,下述不等式成立:

其中是第个质数。若是第质数间隙,那么安德里卡猜想可表述如下:

实证证据

伊姆兰·戈里(Imran Ghory)用了大质数间隙的资料,证实了该猜想对大到  都成立。[2]利用最大质数间隙(maximal gap)和质数间隙不等式,可将此结果推广到大到  之上。

离散方城 呈递减,其中 的“高水位”标记,出现在 之处,其中 ,而对于最初的 个质数而言,没有比这更大的值。由于 该方程对 呈现非病态递减之故,因此若要在 不断变大的情况下使得这个差变大,一个不断增长的质数间隙是必要的。故该猜想非常可能是正确的,但目前还没有证明。

推广

 
广义安德里卡猜想对最初100个质数的x的值,并标出x的最小可能解 的推测位置。

安德里卡猜想的推广会论及以下等式:

 

其中 是第 个质数,而x是任意正实数。

易证x的最大可能解出现于 处,在此处, ;而有猜想认为,x的最小可能解出现于 处,在此处, 。(OEIS数列A038458

该猜想也可以不等式表述,因此广义安德里卡猜想可表述如下:

对于 而言, 

参见

参考和注解

  1. ^ Andrica, D. Note on a conjecture in prime number theory. Studia Univ. Babes–Bolyai Math. 1986, 31 (4): 44–48. ISSN 0252-1938. Zbl 0623.10030. 
  2. ^ Prime Numbers: The Most Mysterious Figures in Math, John Wiley & Sons, Inc., 2005, p. 13.

外部链接