五進位
在五進位中,有五個數字,各是0、1、2、3、4,用來代表各種實數, 依此規則,十進位的5,在五進位中為10。
在二十世紀中,只有肯亞和奈及利亞的約魯巴人仍在使用這種五進位的系統, 不過,十進位在各地區已普遍使用,這些部落原本使用的五進位,也已慢慢消逝。另一方面,在西歐普遍流行的二十進位,亦被視為一種特殊的五進位特例。
Qui (五進) |
Bin (二進) |
Dec (十進) |
---|---|---|
0 | 0000 | 0 |
1 | 0001 | 1 |
2 | 0010 | 2 |
3 | 0011 | 3 |
4 | 0100 | 4 |
10 | 0101 | 5 |
11 | 0110 | 6 |
12 | 0111 | 7 |
13 | 1000 | 8 |
14 | 1001 | 9 |
20 | 1010 | 10 |
21 | 1011 | 11 |
22 | 1100 | 12 |
23 | 1101 | 13 |
24 | 1110 | 14 |
30 | 1111 | 15 |
比較
× | 1 | 2 | 3 | 4 | 10 | 11 | 12 | 13 | 14 | 20 |
1 | 1 | 2 | 3 | 4 | 10 | 11 | 12 | 13 | 14 | 20 |
2 | 2 | 4 | 11 | 13 | 20 | 22 | 24 | 31 | 33 | 40 |
3 | 3 | 11 | 14 | 22 | 30 | 33 | 41 | 44 | 102 | 110 |
4 | 4 | 13 | 22 | 31 | 40 | 44 | 103 | 112 | 121 | 130 |
10 | 10 | 20 | 30 | 40 | 100 | 110 | 120 | 130 | 140 | 200 |
11 | 11 | 22 | 33 | 44 | 110 | 121 | 132 | 143 | 204 | 220 |
12 | 12 | 24 | 41 | 103 | 120 | 132 | 144 | 211 | 223 | 240 |
13 | 13 | 31 | 44 | 112 | 130 | 143 | 211 | 224 | 242 | 310 |
14 | 14 | 33 | 102 | 121 | 140 | 204 | 223 | 242 | 311 | 330 |
20 | 20 | 40 | 110 | 130 | 200 | 220 | 240 | 310 | 330 | 400 |
五進位 | 0 | 1 | 2 | 3 | 4 | 10 | 11 | 12 | 13 | 14 | 20 | 21 | 22 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
二進制 | 0 | 1 | 10 | 11 | 100 | 101 | 110 | 111 | 1000 | 1001 | 1010 | 1011 | 1100 |
十進位 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
五進位 | 23 | 24 | 30 | 31 | 32 | 33 | 34 | 40 | 41 | 42 | 43 | 44 | 100 |
二進制 | 1101 | 1110 | 1111 | 10000 | 10001 | 10010 | 10011 | 10100 | 10101 | 10110 | 10111 | 11000 | 11001 |
十進位 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
十進位 (periodic part) | 五進位 (periodic part) | 二進制 (periodic part) |
1/2 = 0.5 | 1/2 = 0.2 | 1/10 = 0.1 |
1/3 = 0.3 | 1/3 = 0.13 | 1/11 = 0.01 |
1/4 = 0.25 | 1/4 = 0.1 | 1/100 = 0.01 |
1/5 = 0.2 | 1/10 = 0.1 | 1/101 = 0.0011 |
1/6 = 0.16 | 1/11 = 0.04 | 1/110 = 0.010 |
1/7 = 0.142857 | 1/12 = 0.032412 | 1/111 = 0.001 |
1/8 = 0.125 | 1/13 = 0.03 | 1/1000 = 0.001 |
1/9 = 0.1 | 1/14 = 0.023421 | 1/1001 = 0.000111 |
1/10 = 0.1 | 1/20 = 0.02 | 1/1010 = 0.00011 |
1/11 = 0.09 | 1/21 = 0.02114 | 1/1011 = 0.0001011101 |
1/12 = 0.083 | 1/22 = 0.02 | 1/1100 = 0.0001 |
1/13 = 0.076923 | 1/23 = 0.0143 | 1/1101 = 0.000100111011 |
1/14 = 0.0714285 | 1/24 = 0.013431 | 1/1110 = 0.0001 |
1/15 = 0.06 | 1/30 = 0.013 | 1/1111 = 0.0001 |
1/16 = 0.0625 | 1/31 = 0.0124 | 1/10000 = 0.0001 |
1/17 = 0.0588235294117647 | 1/32 = 0.0121340243231042 | 1/10001 = 0.00001111 |
1/18 = 0.05 | 1/33 = 0.011433 | 1/10010 = 0.0000111 |
1/19 = 0.052631578947368421 | 1/34 = 0.011242141 | 1/10011 = 0.000011010111100101 |
1/20 = 0.05 | 1/40 = 0.01 | 1/10100 = 0.000011 |
1/21 = 0.047619 | 1/41 = 0.010434 | 1/10101 = 0.000011 |
1/22 = 0.045 | 1/42 = 0.01032 | 1/10110 = 0.00001011101 |
1/23 = 0.0434782608695652173913 | 1/43 = 0.0102041332143424031123 | 1/10111 = 0.00001011001 |
1/24 = 0.0416 | 1/44 = 0.01 | 1/11000 = 0.00001 |
1/25 = 0.04 | 1/100 = 0.01 | 1/11001 = 0.00001010001111010111 |
用途
在許多語言中[1]都會使用五進制,其中包括古馬其語[2]、農古布尤語[2]、庫恩科潘努特語[3]、路易斯語[4]、薩拉韋卡語。而古馬其語是一種真正的「5-25」語言,其中25是5中較高的一組,古馬其語數字系統[2]如下所示:
十進制 | 五進制 | 數字名稱 |
---|---|---|
1 | 1 | wanggany |
2 | 2 | marrma |
3 | 3 | lurrkun |
4 | 4 | dambumiriw |
5 | 10 | wanggany rulu |
10 | 20 | marrma rulu |
15 | 30 | lurrkun rulu |
20 | 40 | dambumiriw rulu |
25 | 100 | dambumirri rulu |
50 | 200 | marrma dambumirri rulu |
75 | 300 | lurrkun dambumirri rulu |
100 | 400 | dambumiriw dambumirri rulu |
125 | 1000 | dambumirri dambumirri rulu |
625 | 10000 | dambumirri dambumirri dambumirri rulu |
參考
- ^ Harald Hammarström, Rarities in Numeral Systems: "Bases 5, 10, and 20 are omnipresent." doi:10.1515/9783110220933.11
- ^ 2.0 2.1 2.2 Harris, John, Hargrave, Susanne , 編, Facts and fallacies of aboriginal number systems (PDF), Work Papers of SIL-AAB Series B, 1982, 8: 153–181, (原始內容 (PDF)存檔於2007-08-31)
- ^ Dawson, J. "Australian Aborigines: The Languages and Customs of Several Tribes of Aborigines in the Western District of Victoria (1881), p. xcviii.
- ^ Closs, Michael P. Native American Mathematics . ISBN 0-292-75531-7.