奧恩斯坦-烏倫貝克過程

在數學中,奧恩斯坦-烏倫貝克過程(Ornstein-Uhlenbeck process,簡稱OU過程)是一個隨機過程,在金融數學物理學中有很多的引用。OU過程描述一個經歷摩擦的布朗粒子(damped random walk)。[1]

這個過程以奧恩斯坦(Leonard Ornstein)和喬治·烏倫貝克的名字命名。

這是一個自迴歸模型AR(1)。

θ =1.0,σ =3和μ =(0,0) 粒子在(10,10)開始

定義

 
θ =1.0,σ =3, μ =(0,0,0) 粒子在(10,10,10)開始

OU過程有下面的隨機微分方程

 

其中的    是參數,並且  維納過程[2][3][4]

 

  是常值。上面的方程是Vasicek模型。[5]

福克–普朗克方程

OU過程的福克–普朗克方程[6]

 

 。這是一個拋物偏微分方程。方程的解是

 

 
三個OU進程,θ = 1, μ = 1.2, σ = 0.3:
:在a = 0 開始(幾乎必然
:在a=2開始
:初始值呈常態分布

相關

參考文獻

  1. ^ MacLeod, C. L.; Ivezić, Ž; Kochanek, C. S.; Kozłowski, S.; Kelly, B.; Bullock, E.; Kimball, A.; Sesar, B.; Westman, D. Modeling the Time Variability of SDSS Stripe 82 Quasars as a Damped Random Walk. The Astrophysical Journal. October 2010, 721: 1014. doi:10.1088/0004-637X/721/2/1014 (英語). [永久失效連結]
  2. ^ Karatzas, Ioannis; Shreve, Steven E., Brownian Motion and Stochastic Calculus 2nd, Springer-Verlag: 358, 1991, ISBN 978-0-387-97655-6 
  3. ^ Gard, Thomas C., Introduction to Stochastic Differential Equations, Marcel Dekker: 115, 1988, ISBN 978-0-8247-7776-0 
  4. ^ Gardiner, C.W., Handbook of Stochastic Methods 2nd, Springer-Verlag: 106, 1985, ISBN 978-0-387-15607-1 
  5. ^ Björk, Tomas. Arbitrage Theory in Continuous Time 3rd. Oxford University Press. 2009: 375, 381. ISBN 978-0-19-957474-2. 
  6. ^ Risken, H., The Fokker-Planck Equation: Methods of Solution and Application, Springer-Verlag: 99–100, 1984, ISBN 978-0-387-13098-9 
  7. ^ Chan et al. (1992)

閱讀

外部連結