使用者:Wang65/沙盒
時間 | 宙 | 代 | 紀[1] | 世 | 期[2] | 重大事件 | 年代,百萬年前[2] |
---|---|---|---|---|---|---|---|
n/a[3] | 顯生宙 | 新生代[4] | |||||
第四紀 | 全新世 | 末次冰期結束,人類文明興起。第四紀冰河時期退去,目前的間冰期開始。新仙女木期發生寒流,大草原構成了撒哈拉,人類開始農業活動進而建立城市。舊石器時代/新石器時代文化(石器時代)開始公元前1萬年,讓位給紅銅時代(公元前3500年)和青銅時代(公元前2500年)。經歷鐵器時代(公元前1200年)文化持續在複雜性和技術方面成長進步,引起世界各地許多史前文化,最終通向古典時代,如羅馬帝國,文化發展甚至到了中世紀至今。在1400至1850年小冰期(冰階)導致北半球短暫的冷卻。另請參閱考古時期目錄釐清早期的文化和年代。1815年坦博拉火山爆發,造年歐洲和北美天氣異常形成火山冬天導致無夏之年(1816年)。繼工業革命以來,地球大氣層中的二氧化碳含量從280ppmv(體積的百萬分之一)上升到目前的390ppmv。[5] | 0.011700[4][6] | ||||
更新世 | 晚更新期 (區域性塔蘭托期、第勒尼安期、埃姆間冰期、桑加蒙間冰期) | 許多大型哺乳動物(更新世巨型動物)蓬勃發展然後滅絕。晚期智人逐步進化。第四紀冰河時期繼續的冰川作用和間冰階(伴隨著地球大氣層中二氧化碳水平從百萬分之100到300的波動[5]),這種情況進一步強化冰室地球,大約持續了160萬年。末次冰盛期(距今3萬年),末次冰期(距今1萬9千至1萬5千年)。石器時代人類出現文明曙光,相對於以前的冰河時代的文化技術水平複雜度與日益增加,如雕刻和黏土雕像(例如萊斯皮格維納斯),特別是在地中海和歐洲地區。在7萬5千年前多巴湖超級火山爆發,導致火山冬天把人類推向滅絕的邊緣。更新世以老仙女木期結束,老仙女木期(Allerød)和新仙女木期氣候事件與新仙女木期形成與全新世的邊界。 | 0.126 | ||||
中更新期 (原愛奧尼亞期) | 0.781 | ||||||
卡拉布里亞階 | 1.806* | ||||||
格拉斯期 | 2.588* | ||||||
新近紀 | 上新世 | 皮亞琴察期/勃朗期 | 252萬年前第四紀冰河時期開始,寒冷乾燥的氣候強化了目前的冰室條件。南猿、許多現有哺乳動物屬,和全新世軟體動物出現。能人出現。 | 3.600* | |||
贊克爾期 | 5.333* | ||||||
中新世 | 墨西拿期 | 適度的冰室氣候,不時中斷冰河時期;北半球開始造山運動。現代哺乳動物和鳥類家庭能被分辨出來。馬科動物和乳齒象多種多樣。禾本科植物變得無處不在。第一種類人猿出現(僅供參考,請參閱文章:「查德沙赫人」)。凱庫拉造山運動形成了紐西蘭的南阿爾卑斯山脈,一直延續到今天。歐洲的阿爾卑斯山造山運動放緩,但也延續至今。在中歐和東歐喀爾巴阡造山運動形成喀爾巴阡山脈。在希臘和愛琴海的希臘造山運動放緩,但一直持續到今天。中新世中期發生生物集群滅絕。廣袤的森林慢慢地通過光合作用吸收了大量的二氧化碳,逐漸降低大氣中的二氧化碳水平從650ppmv到大約100ppmv[5]。 | 7.246* | ||||
托爾頓期 | 11.62* | ||||||
塞拉瓦爾期 | 13.84* | ||||||
蘭蓋期 | 15.97 | ||||||
布爾迪加爾期 | 20.44 | ||||||
阿基坦期 | 23.03* | ||||||
古近紀 | 漸新世 | 恰特期 | 溫暖但氣候變冷,接近冰室氣候。動植物特別是哺乳動物快速進化和多樣化。這個時期主要發生了現代類型的開花植物進化和傳播。 | 28.1 | |||
魯培爾期 | 33.9* | ||||||
始新世 | 普里阿邦期 | 適中,氣候變冷。史前哺乳動物(例如:肉齒目,踝節目,猶因他獸科等)蓬勃發展,並繼續在始新世發展。「現代」哺乳科類物種出現。原始鯨多樣化。禾草首次出現。再次的冰川作用行成了南極洲冰帽;滿江紅事件觸發冰河時代,而冰室地球氣候跟隨到這一天發生,從沉降和衰變的海床海藻沉澱大量大氣中的二氧化碳[5],濃度從3800ppmv降低到650ppmv。在北美落基山脈的拉臘米和塞維爾造山作用結束。歐洲的阿爾卑斯山造山運動開始。在希臘和愛琴海希臘造山運動開始。 | 38.0 | ||||
巴爾頓期 | 42.3 | ||||||
盧台特期 | 47.6* | ||||||
伊普雷斯期 | 56.0* | ||||||
古新世 | 贊尼特期 | 熱帶氣候。現代植物出現;接著恐龍的滅絕一些原始血統的哺乳動物逐步多樣化。
大型哺乳動物首次出現(相當於熊或小型河馬尺寸)。在歐洲和亞洲的阿爾卑斯造山運動開始。5500萬年前印度次大陸與亞洲擠壓,在5500-5500萬年之間喜馬拉雅運動開始。 |
59.2* | ||||
塞蘭特期 | 61.6* | ||||||
達寧期 | 66.0* | ||||||
中生代 | 白堊紀 | 晚白堊世 | 麥斯里希特期 | Flowering plants proliferate, along with new types of insects. More modern teleost fish begin to appear. Ammonoidea, belemnites, rudist bivalves, echinoids and sponges all common. Many new types of dinosaurs (e.g. Tyrannosaurs, Titanosaurs, duck bills, and horned dinosaurs) evolve on land, as do Eusuchia (modern crocodilians); and mosasaurs and modern sharks appear in the sea. Primitive birds gradually replace pterosaurs. Monotremes, marsupials and placental mammals appear. Break up of Gondwana. Beginning of Laramide and Sevier Orogenies of the Rocky Mountains. Atmospheric CO2 close to present-day levels. | 70.6 ± 0.6* | ||
坎帕期 | 83.5 ± 0.7* | ||||||
桑托期 | 85.8 ± 0.7* | ||||||
科尼亞克期 | 89.3 ± 1.0* | ||||||
土侖期 | 93.5 ± 0.8* | ||||||
森諾曼期 | 99.6 ± 0.9* | ||||||
早白堊世 | 阿爾布期 | 112.0 ± 1.0* | |||||
阿普第期 | 125.0 ± 1.0* | ||||||
巴列姆期 | 130.0 ± 1.5* | ||||||
豪特里維期 | 136.4 ± 2.0* | ||||||
凡藍今期 | 140.2 ± 3.0* | ||||||
貝里亞期 | 145.5 ± 4.0* | ||||||
侏羅紀 | 晚侏羅世 | 提通期 | Gymnosperms (especially conifers, Bennettitales and cycads) and ferns common. Many types of dinosaurs, such as sauropods, carnosaurs, and stegosaurs. Mammals common but small. First birds and lizards. Ichthyosaurs and plesiosaurs diverse. Bivalves, Ammonites and belemnites abundant. Sea urchins very common, along with crinoids, starfish, sponges, and terebratulid and rhynchonellid brachiopods. Breakup of Pangaea into Gondwana and Laurasia. Nevadan orogeny in North America. Rantigata and Cimmerian Orogenies taper off. Atmospheric CO2 levels 4–5 times the present day levels (1200–1500 ppmv, compared to today's 385 ppmv[5]). | 150.8 ± 4.0* | |||
啟莫里期 | 155.7 ± 4.0* | ||||||
牛津期 | 161.2 ± 4.0* | ||||||
中侏羅世 | 卡洛維期 | 164.7 ± 4.0 | |||||
巴通期 | 167.7 ± 3.5* | ||||||
巴柔期 | 171.6 ± 3.0* | ||||||
阿連期 | 175.6 ± 2.0* | ||||||
早侏羅世 | 托阿爾期 | 183.0 ± 1.5* | |||||
普連斯巴奇期 | 189.6 ± 1.5* | ||||||
錫內穆期 | 196.5 ± 1.0* | ||||||
海塔其期 | 199.6 ± 0.6* | ||||||
三疊紀 | 晚三疊世 | 瑞替期 | Archosaurs dominant on land as dinosaurs, in the oceans as Ichthyosaurs and nothosaurs, and in the air as pterosaurs. Cynodonts become smaller and more mammal-like, while first mammals and crocodilia appear. Dicroidium flora common on land. Many large aquatic temnospondyl amphibians. Ceratitic ammonoids extremely common. Modern corals and teleost fish appear, as do many modern insect clades. Andean Orogeny in South America. Cimmerian Orogeny in Asia. Rangitata Orogeny begins in New Zealand. Hunter-Bowen Orogeny in Northern Australia, Queensland and New South Wales ends, (c. 260–225 Ma) | 203.6 ± 1.5* | |||
諾利期 | 216.5 ± 2.0* | ||||||
卡尼期 | 228.0 ± 2.0* | ||||||
中三疊世 | 拉丁尼期 | 237.0 ± 2.0* | |||||
安尼西期 | 245.0 ± 1.5* | ||||||
早三疊世 | 奧倫尼剋期 | 249.7 ± 1.5* | |||||
印度期 | 251.0 ± 0.7* | ||||||
古生代 | 二疊紀 | 樂平世 | 長興期 | Landmasses unite into supercontinent Pangaea, creating the Appalachians. End of Permo-Carboniferous glaciation. Synapsid reptiles (pelycosaurs and therapsids) become plentiful, while parareptiles and temnospondyl amphibians remain common. In the mid-Permian, coal-age flora are replaced by cone-bearing gymnosperms (the first true seed plants) and by the first true mosses. Beetles and flies evolve. Marine life flourishes in warm shallow reefs; productid and spiriferid brachiopods, bivalves, forams, and ammonoids all abundant. Permian-Triassic extinction event occurs 251 Ma: 95% of life on Earth becomes extinct, including all trilobites, graptolites, and blastoids. Ouachita and Innuitian orogenies in North America. Uralian orogeny in Europe/Asia tapers off. Altaid orogeny in Asia. Hunter-Bowen Orogeny on Australian Continent begins (c. 260–225 Ma), forming the MacDonnell Ranges. | 253.8 ± 0.7* | ||
吳家坪期 | 260.4 ± 0.7* | ||||||
瓜德魯普世 | 卡匹敦階 | 265.8 ± 0.7* | |||||
沃德期/卡贊期 | 268.4 ± 0.7* | ||||||
羅德期/烏非姆期 | 270.6 ± 0.7* | ||||||
烏拉爾世 | 空谷爾期 | 275.6 ± 0.7* | |||||
阿爾丁斯剋期 | 284.4 ± 0.7* | ||||||
薩克馬爾期 | 294.6 ± 0.8* | ||||||
阿瑟爾期 | 299.0 ± 0.8*
| ||||||
石炭紀[7]/ 賓夕法尼亞紀 |
晚賓夕法尼亞世 | 格熱爾期 | Winged insects radiate suddenly; some (esp. Protodonata and Palaeodictyoptera) are quite large. Amphibians common and diverse. First reptiles and coal forests (scale trees, ferns, club trees, giant horsetails, Cordaites, etc.). Highest-ever atmospheric oxygen levels. Goniatites, brachiopods, bryozoa, bivalves, and corals plentiful in the seas and oceans. Testate forams proliferate. Uralian orogeny in Europe and Asia. Variscan orogeny occurs towards middle and late Mississippian Periods. | 303.7 ± 0.1 | |||
卡西莫夫期 | 307.0 ± 0.1 | ||||||
中賓夕法尼亞世 | 莫斯科期 | 315.2 ± 0.2 | |||||
早賓夕法尼亞世 | 巴什基爾期 | 323.2 ± 0.4* | |||||
石炭紀[7]/ 密西西比紀 |
晚密西西比世 | 謝爾普霍夫期 | Large primitive trees, first land vertebrates, and amphibious sea-scorpions live amid coal-forming coastal swamps. Lobe-finned rhizodonts are dominant big fresh-water predators. In the oceans, early sharks are common and quite diverse; echinoderms (especially crinoids and blastoids) abundant. Corals, bryozoa, goniatites and brachiopods (Productida, Spiriferida, etc.) very common, but trilobites and nautiloids decline. Glaciation in East Gondwana. Tuhua Orogeny in New Zealand tapers off. | 330.9 ± 0.2 | |||
中密西西比世 | 維憲期 | 346.7 ± 0.4* | |||||
早密西西比世 | 圖爾奈期 | 358.9 ± 0.4* | |||||
泥盆紀 | 晚泥盆世 | 法門期 | First clubmosses, horsetails and ferns appear, as do the first seed-bearing plants (progymnosperms), first trees (the progymnosperm Archaeopteris), and first (wingless) insects. Strophomenid and atrypid brachiopods, rugose and tabulate corals, and crinoids are all abundant in the oceans. Goniatite ammonoids are plentiful, while squid-like coleoids arise. Trilobites and armoured agnaths decline, while jawed fishes (placoderms, lobe-finned and ray-finned fish, and early sharks) rule the seas. First amphibians still aquatic. "Old Red Continent" of Euramerica. Beginning of Acadian Orogeny for Anti-Atlas Mountains of North Africa, and Appalachian Mountains of North America, also the Antler, Variscan, and Tuhua Orogeny in New Zealand. | 372.2 ± 1.6* | |||
弗拉斯期 | 382.7 ± 1.6* | ||||||
中泥盆世 | 吉維特期 | 387.7 ± 0.8* | |||||
艾菲爾期 | 393.3 ± 1.2* | ||||||
早泥盆世 | 埃姆斯期 | 407.6 ± 2.6* | |||||
布拉格期 | 410.8 ± 2.8* | ||||||
洛赫科夫期 | 419.2 ± 3.2* | ||||||
志留紀 | 普里道利世 | 無生物劃分階 | First Vascular plants (the rhyniophytes and their relatives), first millipedes and arthropleurids on land. First jawed fishes, as well as many armoured jawless fish, populate the seas. Sea-scorpions reach large size. Tabulate and rugose corals, brachiopods (Pentamerida, Rhynchonellida, etc.), and crinoids all abundant. Trilobites and mollusks diverse; graptolites not as varied. Beginning of Caledonian Orogeny for hills in England, Ireland, Wales, Scotland, and the Scandinavian Mountains. Also continued into Devonian period as the Acadian Orogeny, above. Taconic Orogeny tapers off. Lachlan Orogeny on Australian Continent tapers off. | 423.0 ± 2.3* | |||
蘭多維列世/卡尤加世 | 盧德福德期 | 425.6 ± 0.9* | |||||
戈斯特期 | 427.4 ± 0.5* | ||||||
文洛克世 | 侯默期/洛克波特期 | 430.5 ± 0.7* | |||||
申伍德期/托納旺達期 | 433.4 ± 0.8* | ||||||
蘭多維利世/ 亞歷山大世 |
特列奇期/安大略期 | 438.5 ± 1.1* | |||||
愛隆期 | 440.8 ± 1.2* | ||||||
魯丹期 | 443.4 ± 1.5* | ||||||
奧陶紀 | 晚奧陶世 | 赫南特期 | Invertebrates diversify into many new types (e.g., long straight-shelled cephalopods). Early corals, articulate brachiopods (Orthida, Strophomenida, etc.), bivalves, nautiloids, trilobites, ostracods, bryozoa, many types of echinoderms (crinoids, cystoids, starfish, etc.), branched graptolites, and other taxa all common. Conodonts (early planktonic vertebrates) appear. First green plants and fungi on land. Ice age at end of period. | 445.2 ± 1.4* | |||
凱迪期 | 453.0 ± 0.7* | ||||||
桑比期 | 458.4 ± 0.9* | ||||||
中奧陶世 | 達瑞威爾期 | 467.3 ± 1.1* | |||||
大坪期 | 470.0 ± 1.4* | ||||||
初奧陶世 | 弗洛期 (formerly Arenig) |
477.7 ± 1.4* | |||||
特馬豆剋期 | 485.4 ± 1.9* | ||||||
寒武紀 | 芙蓉世 | 第十期 | Major diversification of life in the Cambrian Explosion. Numerous fossils; most modern animal phyla appear. First chordates appear, along with a number of extinct, problematic phyla. Reef-building Archaeocyatha abundant; then vanish. Trilobites, priapulid worms, sponges, inarticulate brachiopods (unhinged lampshells), and many other animals numerous. Anomalocarids are giant predators, while many Ediacaran fauna die out. Prokaryotes, protists (e.g., forams), fungi and algae continue to present day. Gondwana emerges. Petermann Orogeny on the Australian Continent tapers off (550–535 Ma). Ross Orogeny in Antarctica. Adelaide Geosyncline (Delamerian Orogeny), majority of orogenic activity from 514–500 Ma. Lachlan Orogeny on Australian Continent, c. 540–440 Ma. Atmospheric CO2 content roughly 20–35 times present-day (Holocene) levels (6000 ppmv compared to today's 385 ppmv)[5] | c. 489.5 | |||
江山期 | c. 494* | ||||||
排碧期 | c. 497* | ||||||
第三世 | 古丈期 | c. 500.5* | |||||
鼓山期 | c. 504.5* | ||||||
第五期 | c. 509 | ||||||
第二世 | 第四期 | c. 514 | |||||
第三期 | c. 521 | ||||||
紐芬蘭世 | 第二期 | c. 529 | |||||
幸運期 | 541.0 ± 1.0* | ||||||
前寒武紀[8] | 元古宙[9] | 新元古代[9] | 埃迪卡拉紀 | Good fossils of the first multi-celled animals. Ediacaran biota flourish worldwide in seas. Simple trace fossils of possible worm-like Trichophycus, etc. First sponges and trilobitomorphs. Enigmatic forms include many soft-jellied creatures shaped like bags, disks, or quilts (like Dickinsonia). Taconic Orogeny in North America. Aravalli Range orogeny in Indian Subcontinent. Beginning of Petermann Orogeny on Australian Continent. Beardmore Orogeny in Antarctica, 633–620 Ma. | 630 +5/-30* | ||
成冰紀 | Possible "Snowball Earth" period. Fossils still rare. Rodinia landmass begins to break up. Late Ruker / Nimrod Orogeny in Antarctica tapers off. | 850[10] | |||||
拉伸紀 | Rodinia supercontinent persists. Trace fossils of simple multi-celled eukaryotes. First radiation of dinoflagellate-like acritarchs. Grenville Orogeny tapers off in North America. Pan-African orogeny in Africa. Lake Ruker / Nimrod Orogeny in Antarctica, 1000 ± 150 Ma. Edmundian Orogeny (c. 920 - 850 Ma), Gascoyne Complex, Western Australia. Adelaide Geosyncline laid down on Australian Continent, beginning of Adelaide Geosyncline (Delamerian Orogeny) in that continent. | 1000[10] | |||||
中元古代[9] | 狹帶紀 | Narrow highly metamorphic belts due to orogeny as Rodinia forms. Late Ruker / Nimrod Orogeny in Antarctica possibly begins. Musgrave Orogeny (c. 1080 Ma), Musgrave Block, Central Australia. | 1200[10] | ||||
延展紀 | Platform covers continue to expand. Green algae colonies in the seas. Grenville Orogeny in North America. | 1400[10] | |||||
蓋層紀 | Platform covers expand. Barramundi Orogeny, McArthur Basin, Northern Australia, and Isan Orogeny, c. 1600 Ma, Mount Isa Block, Queensland | 1600[10] | |||||
古元古代[9] | 固結紀 | First complex single-celled life: protists with nuclei. Columbia is the primordial supercontinent. Kimban Orogeny in Australian Continent ends. Yapungku Orogeny on Yilgarn craton, in Western Australia. Mangaroon Orogeny, 1680–1620 Ma, on the Gascoyne Complex in Western Australia. Kararan Orogeny (1650-Ma), Gawler Craton, South Australia. | 1800[10] | ||||
造山紀 | The atmosphere becomes oxygenic. Vredefort and Sudbury Basin asteroid impacts. Much orogeny. Penokean and Trans-Hudsonian Orogenies in North America. Early Ruker Orogeny in Antarctica, 2000 - 1700 Ma. Glenburgh Orogeny, Glenburgh Terrane, Australian Continent c. 2005–1920 Ma. Kimban Orogeny, Gawler craton in Australian Continent begins. | 2050[10] | |||||
層侵紀 | Bushveld Igneous Complex forms. Huronian glaciation. | 2300[10] | |||||
成鐵紀 | Oxygen catastrophe: banded iron formations forms. Sleaford Orogeny on Australian Continent, Gawler Craton 2440–2420 Ma. | 2500[10] | |||||
太古宙[9] | 新太古代[9] | Stabilization of most modern cratons; possible mantle overturn event. Insell Orogeny, 2650 ± 150 Ma. Abitibi greenstone belt in present-day Ontario and Quebec begins to form, stablizes by 2600 Ma. | 2800[10] | ||||
中太古代[9] | First stromatolites (probably colonial cyanobacteria). Oldest macrofossils. Humboldt Orogeny in Antarctica. Blake River Megacaldera Complex begins to form in present-day Ontario and Quebec, ends by roughly 2696 Ma. | 3200[10] | |||||
古太古代[9] | First known oxygen-producing bacteria. Oldest definitive microfossils. Oldest cratons on Earth (such as the Canadian Shield and the Pilbara Craton) may have formed during this period[11]. Rayner Orogeny in Antarctica. | 3600[10] | |||||
始太古代[9] | Simple single-celled life (probably bacteria and archaea). Oldest probable microfossils. | 3800 | |||||
冥古宙 [9][12] |
早雨海代[9][13] | Indirect photosynthetic evidence (e.g., kerogen) of primordial life. This era overlaps the end of the Late Heavy Bombardment of the inner solar system. | c.3850 | ||||
酒神代[9][13] | 本代的名稱來源月球地址年代由神酒海和其他更大的月海的撞擊事件所組成的。 | c.3920 | |||||
原生代[9][13] | Oldest known rock (4030 Ma)[14]. The first life forms and self-replicating RNA molecules evolve around 4000 Ma, after the Late Heavy Bombardment ends on Earth. Napier Orogeny in Antarctica, 4000 ± 200 Ma. | c.4150 | |||||
隱生代[9][13] | 已知最古老的礦物(鋯石,4404±8百萬年)。[15]月球形成(4533百萬年),可能來自大碰撞。地球形成(4567.17至4570百萬年)。 | c.4600 |
- ^ Paleontologists often refer to faunal stages rather than geologic (geological) periods. The stage nomenclature is quite complex. For an excellent time-ordered list of faunal stages, see The Paleobiology Database. [2006-03-19].
- ^ 2.0 2.1 Dates are slightly uncertain with differences of a few percent between various sources being common. This is largely due to uncertainties in radiometric dating and the problem that deposits suitable for radiometric dating seldom occur exactly at the places in the geologic column where they would be most useful. The dates and errors quoted above are according to the International Commission on Stratigraphy 2004 time scale. Dates labeled with a * indicate boundaries where a Global Boundary Stratotype Section and Point has been internationally agreed upon: see List of Global Boundary Stratotype Sections and Points for a complete list.
- ^ References to the "Post-Cambrian Supereon" are not universally accepted, and therefore must be considered unofficial.
- ^ 4.0 4.1 Historically, the Cenozoic has been divided up into the Quaternary and Tertiary sub-eras, as well as the Neogene and Paleogene periods. The 2009 version of the ICS time chart recognizes a slightly extended Quaternary as well as the Paleogene and a truncated Neogene, the Tertiary having been demoted to informal status.
- ^ 5.0 5.1 5.2 5.3 5.4 5.5 For more information on this, see the following articles: Earth's atmosphere, carbon dioxide, Carbon dioxide in the Earth's atmosphere, global warming, climate change, Image:Phanerozoic_Carbon_Dioxide.png, Image:65 Myr Climate Change.png, Image:Five Myr Climate Change.png, and Template:DF temperature
- ^ The start time for the Holocene epoch is here given as 11,700 years ago. For further discussion of the dating of this epoch, see Holocene.
- ^ 7.0 7.1 In North America, the Carboniferous is subdivided into Mississippian and Pennsylvanian Periods.
- ^ The Precambrian is also known as Cryptozoic.
- ^ 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 9.13 The Proterozoic, Archean and Hadean are often collectively referred to as the Precambrian Time or sometimes, also the Cryptozoic.
- ^ 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Defined by absolute age (Global Standard Stratigraphic Age).
- ^ The age of the oldest measurable craton, or continental crust, is dated to 3600–3800 Ma
- ^ Though commonly used, the Hadean is not a formal eon and no lower bound for the Archean and Eoarchean have been agreed upon. The Hadean has also sometimes been called the Priscoan or the Azoic. Sometimes, the Hadean can be found to be subdivided according to the lunar geologic time scale. These eras include the Cryptic and Basin Groups (which are subdivisions of the Pre-Nectarian era), Nectarian, and Early Imbrian units.
- ^ 13.0 13.1 13.2 13.3 These unit names were taken from the Lunar geologic timescale and refer to geologic events that did not occur on Earth. Their use for Earth geology is unofficial.
- ^ Bowring, Samuel A.; Williams, Ian S. Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contributions to Mineralogy and Petrology. 1999, 134 (1): 3. Bibcode:1999CoMP..134....3B. doi:10.1007/s004100050465. The oldest rock on Earth is the Acasta Gneiss, and it dates to 4.03 Ga, located in the Northwest Territories of Canada.
- ^ Geology.wisc.edu