圣彼得堡悖论
此條目没有列出任何参考或来源。 (2015年9月6日) |
圣彼得堡悖论(St. Petersburg paradox)是决策论中的一个悖论,由尼古拉一世·伯努利提出。1738年,丹尼尔·伯努利以效用理論來解答這個問題,因此形成預期效用理論。
問題內容
1730年代,数学家丹尼尔·伯努利的堂兄尼古拉一世·伯努利,在致法國數學家皮耶·黑蒙·德蒙馬特的信件中,提出一个問题:
有一個「掷硬币擲到正面為止」的賭局,第一次掷出正面,就給你1元。第一次掷出反面,那就要再掷一次,若第二次掷的是正面,你便赚2元。若第二次掷出反面,那就要掷第三次,若第三次掷的是正面,你便赚2*2元……如此类推,一直擲到正面為止。你可能掷一次,賭局便结束,也可能反复一直掷,掷個没完没了。问题是,你最多肯付多少钱参加这个賭局?
你最多肯付的钱应等于该游戏的期望值:
这个賭局的期望值是无限大,即你最多肯付出无限的金钱去参加这个游戏。但是,你更可能只赚到1元,或者2元,或者4元等,而不可能賺到无限的金錢。那你为什么肯付出无限的金钱参加賭局呢?
如果限定最多可以擲100次(100次都是反面,就不給你錢了),則期望值為50元,但是一般人都不願意真的付50元去參加這個賭局。
实验的论文解释
丹尼尔·伯努利在1738年的论文里,对这个悖论提出了解答,他以效用的概念,來挑战以金额期望值为决策标准,论文主要包括两条原理: