血管紧张素转化酶2

位於人類X染色體的基因

血管紧张素转化酶2(英語:Angiotensin-converting enzyme 2ACE2;人類的ACE2常被稱為hACE2[5])在人類基因組中由X染色體上的基因編碼,是一種表現於動脈心臟腎臟腸道等組織細胞表面的膜蛋白,為血管紧张素Ⅰ转化酶(ACE)的一個旁系同源體英语Homology (biology)

血管紧张素转化酶2
已知的結構
PDB直系同源搜索: PDBe RCSB
識別號
别名ACE2;, ACEH, angiotensin I converting enzyme 2, ACE 2
外部IDOMIM300335 MGI1917258 HomoloGene41448 GeneCardsACE2
基因位置(人类
X染色體
染色体X染色體[1]
X染色體
血管紧张素转化酶2的基因位置
血管紧张素转化酶2的基因位置
基因座Xp22.2起始15,561,033 bp[1]
终止15,602,148 bp[1]
RNA表达模式


查阅更多表达数据
直系同源
物種人類小鼠
Entrez
Ensembl
UniProt
mRNA​序列

NM_021804
​NM_001371415

NM_001130513
​NM_027286

蛋白序列

NP_068576
​NP_001358344

NP_001123985
​NP_081562

基因位置​(UCSC)Chr X: 15.56 – 15.6 MbChr X: 162.92 – 162.97 Mb
PubMed​查找[3][4]
維基數據
檢視/編輯人類檢視/編輯小鼠

ACE2有切割多肽的功能,其多肽酶結構域位於細胞膜外側,一般在細胞膜上作用,可被脫落酶英语sheddase切割後脫離細胞、自組織間移除。ACE2可分別將血管紧张素I血管紧张素II轉化为血管收縮素(1-9)血管收縮素(1-7)英语Angiotensin (1-7)[6][7],因而在心血管組織中有抗氧化與抗發炎等功能,在肺臟中可避免肺組織的損傷,在骨骼肌中或许能抑制肌肉纖維化。ACE2的表現可緩解許多心血管疾病的症狀,其表現量的下降則與這些疾病有相關性,有研究嘗試開發體外合成的人重組ACE2(rhACE2)為這些疾病的一種藥物。除切割多肽外,ACE2還有若干和多肽酶無關的功能。

ACE2还被SARS-CoVSARS-CoV-2(屬乙型冠狀病毒)和人類冠狀病毒NL63(屬甲型冠狀病毒)等冠狀病毒用作感染細胞的受体[8],這些病毒刺突蛋白的受体结合域[9](RBD,receptor binding domain)可結合ACE2,進而使病毒進入細胞內。三種病毒的RBD均與ACE2的相同區域結合,但NL63病毒的RBD結構和另兩者差異較大,與ACE2的結合應為趨同演化的結果,且結合力較另外兩種病毒弱。SARS相關病毒也並非皆以ACE2為感染細胞的受體,SARS-CoV-2支系的共祖可能具有和ACE2結合的能力,此支系的病毒又與SARS-CoV支系的病毒發生重組,使部分SARS-CoV相關病毒也獲得此能力。

結構

血管紧张素转化酶2(ACE2)最早於2000年自cDNA基因庫中被發現,為血管紧张素转化酶(ACE)第一個被發現的旁系同源體英语Homology (biology)[6],ACE2的基因位於人類基因組中的X染色體,包括18個外顯子,編碼的蛋白由805個胺基酸組成,與ACE的胺基酸序列相似度為42%[10],是一個帶有鋅離子金屬蛋白,屬單次跨膜蛋白英语Bitopic protein(第一型膜蛋白),其N端結構域為一M2多肽酶,位於細胞膜外側,可再細分為I與II兩個子結構域(由一個α螺旋相連)[11]C端則與另一種名為collectrin的蛋白同源,包括疏水的跨膜結構域和一個胺基酸轉運體英语Amino acid transporter結構域,位於細胞內[12]

ACE2因有跨膜區域而造成其結構測定的困難,過去僅知其N端多肽酶的結構,直到2020年科學家才用低溫電子顯微鏡測出了與另一蛋白B0AT1英语Sodium-dependent neutral amino acid transporter B(0)AT1結合狀態的完整ACE2結構,發現兩個ACE2和兩個B0AT1組成一複合體,複合體中兩個ACE2有交互作用,B0AT1間則無交互作用,僅與鄰近的ACE2作用,因此研究人員推測細胞膜上的ACE2也可能會形成二聚體[13][14]

切割機理

ACE2的活性位點有一個鋅離子(位於多肽酶的子結構域I),和ACE2的兩個組胺酸、一個麩胺酸與一個分子錯合,切割多肽時,錯合的水分子作為一親核基,進攻多肽的羰基,形成四面體形的中間產物,並將質子轉移到麩胺酸上,此時組胺酸上的氫離子轉移到要被切除的胺基酸之胺基上,隨後肽鍵斷裂,此胺基酸作為離去基從中間產物脫離,並從麩胺酸處獲得氫離子[11]

 

表現組織

人體幾乎所有器官組織都有表現血管紧张素转化酶(ACE),而血管紧张素转化酶2(ACE2)則表現於II型肺泡細胞小腸腸上皮細胞英语enterocyte血管內皮細胞血管平滑肌細胞、腎臟上皮細胞等,腦部許多神經元膠細胞可能也有表現ACE2[10][15]。多數組織中ACE2的轉錄都是由一個較接近其基因的啟動子起始,但肺臟中ACE2基因的轉錄多起始於一個較遠的啟動子,兩啟動子轉錄出的mRNA5端序列稍有不同[16][17]

功能

切割多肽

血管紧张素转化酶2
识别码
EC編號 3.4.17.23
数据库
IntEnz IntEnz浏览
BRENDA英语BRENDA BRENDA入口
ExPASy英语ExPASy NiceZyme浏览
KEGG KEGG入口
MetaCyc英语MetaCyc 代谢路径
PRIAM英语PRIAM_enzyme-specific_profiles 概述
PDB RCSB PDB PDBj PDBe PDBsum

血管紧张素转化酶2主要的功能是與血管紧张素Ⅰ转化酶(ACE)拮抗,ACE可將無活性的血管收縮素Ⅰ切割成血管收縮素II,後者可促進抗利尿激素醛固酮的分泌,以及刺激血管平滑肌收縮,使血壓上升;ACE2則分解血管收縮素Ⅰ和血管收縮素II以抑制其作用,將其C端的胺基酸移除,分別將前者轉化成血管收縮素(1-9),將後者轉化成血管收縮素(1-7)英语Angiotensin (1-7)[註 1],其中切割血管收縮素II比切割血管收縮素I的能力高出許多,切割的產物中,血管收縮素(1-9)的功能不明,血管收縮素(1-7)則可刺激一氧化氮合成、抑制MAPK/ERK途徑英语MAPK/ERK pathwayTGFβ途徑英语TGF beta signaling pathway、以及抑制活性氧物質的生成,因此在心血管組織中有抗氧化與抗發炎等功能[10][13]。許多研究結果顯示ACE2表現量的下降與數種心血管疾病有相關性[19]

肺泡細胞表現的ACE2有保護肺組織的功能。血管收縮素II可促進肺泡細胞凋亡與肺纖維化[20],因此ACE2將其分解可保護肺免於損傷[21],加上血管收縮素(1-7)可與MAS1英语Mas受體結合,啟動下游反應以抑制血管收縮素II的作用[21][22]

骨骼肌中,血管收縮素II與血管收縮素(1-7)均有重要功能。血管收縮素II透過多種途徑降低肌肉蛋白質的合成,包括抑制AktmTOR英语mTOR途徑、促進肌萎缩素1英语FBXO32肌环指蛋白1英语TRIM63的合成、生成活性氧物質而活化胱天蛋白酶途徑使細胞凋亡等,肌肉蛋白合成與分解的失衡會造成肌萎缩英语muscular atrophy、肌纖維化等症狀[23][24],因此將血管收縮素II被轉化成血管收縮素(1-7)可停止其作用,且後者還可與MAS1英语Mas受體結合,活化另一條反應途徑而抑制肌纖維化[13][25]。相較之下ACE2在骨骼肌的直接影響還有待更多研究闡明,有初步研究結果顯示在萎縮的肌肉組織中,ACE2可能可降低纖維化[13][26]

由於ACE2的表現可緩解許多心血管疾病的症狀,有研究嘗試在體外以細胞株合成ACE2(人重組ACE2;rhACE2)以期作為這些疾病的一種療法[17][27]

除了切割血管收縮素II外,ACE2還可切割強啡肽A英语Dynorphin Aapelin-13英语apelin-13[28]、apelin-36、去精胺酸緩激肽(des-Arg(9) bradykinin)、β-酪啡肽英语casomorphin等其他多肽,惟其生理意義仍不明[17][29]

其他

除了切割多肽外,ACE2還有些與其蛋白酶活性無關的功能。有研究顯示ACE2可與整合素結合,有助於細胞黏附[13][30]。此外ACE2還參與了另一蛋白B0AT1英语Sodium-dependent neutral amino acid transporter B(0)AT1膜囊泡運輸過程,為其伴護蛋白,與B0AT1形成一複合體,協助將其轉運至細胞膜[14]

移除

ACE2的跨膜結構域可被一種稱為金屬蛋白酶17英语MMP17(MMP17)的脱落酶英语sheddase切割,將其胞外部分釋放到血液中,進而從組織間移除[31][32],此過程受到許多調控,例如有一種鈣調蛋白可與ACE2結合以抑制MMP17的切割[33]血管收縮素II也可促進MMP17的活性,把會將其分解的ACE2移除[34],另外許多病理狀況、發炎反應也可促進MMP17對ACE2的切割。脫落酶的切割會造成心血管組織中ACE2的流失、血液中ACE2的濃度升高,因此後者可當作心臟衰竭心房顫動動脈粥樣硬化慢性腎臟病心肌梗塞中風等多種疾病的生物標記[13][35]

冠狀病毒受體

 
SARS-CoV-2以ACE2為受體感染細胞

血管紧张素转化酶2被許多冠狀病毒用來當作感染細胞的受體,包括造成普通感冒人類冠狀病毒NL63(屬甲型冠狀病毒[36]、與MERS-CoV關係接近的祖魯棕蝠冠狀病毒(NeoCoV)[37]、造成SARSSARS-CoV[38][39]和造成2019冠狀病毒病SARS-CoV-2(屬乙型冠狀病毒[40]等,這些病毒刺突蛋白S1結構域中的受體結合結構域(receptor binding domain;RBD)和ACE2胞外的區域結合後,刺突蛋白可能被細胞表面的跨膜丝氨酸蛋白酶2(TMPRSS2)切割,促使病毒外膜和宿主細胞膜融合而讓病毒進入細胞質[41];此外SARS-CoV與SARS-CoV-2[42]還可能在不被TMPRSS2切割的情況下,與ACE2受體一起藉由內吞作用進入細胞,隨後其刺突蛋白在溶體中被組織蛋白酶切割後,再從溶體進入細胞質中[43][44][45]

SARS-CoV與SARS-CoV-2的RBD結構相似,胺基酸序列相似度為72%,SARS-CoV的RBD和ACE2結合時,與其直接接觸的胺基酸共有16個,其中8個位點在SARS-CoV-2中為對應相同胺基酸,另外8個則不同,因此兩者與ACE2結合的機制略有差異[46]。SARS-CoV-2的RBD有6個胺基酸為與ACE2結合所需,包括白胺酸455、苯丙胺酸486、麩醯胺酸493、絲胺酸494、天門冬醯胺501與酪氨酸505[47],與ACE2的結合力高於SARS-CoV[48]。人類冠狀病毒NL63之RBD則與前兩者的結構差異較大,卻能和ACE2的同一區域結合,為趨同演化的結果,但NL63和ACE2的結合力較弱,可能是其感染症狀較輕微的原因之一[46]

SARS相關病毒亦非皆以ACE2為感染細胞的受體,SARSr-CoV中,使用ACE2為受體的病毒株包含SARS-CoV支系的果子狸SARS冠狀病毒WIV1SHC014WIV16LYRa11、Rs4874、Rs7327等(以上病毒的RBD序列可再分成兩支),以及SARS-CoV-2支系的RaTG13穿山甲冠狀病毒,上述以ACE2為受體的蝙蝠病毒皆是在中國雲南省發現;SARS-CoV支系的YNLF_31CYNLF_34CBtKY72BM48-3116BO133HKU3Rm1Rf1等,以及SARS-CoV-2支系的RmYN02之RBD則應無法與ACE2結合,而是使用其他蛋白作為感染的受體,這些病毒株的RBD大多具有兩段序列缺失,可能因此影響和ACE2結合的能力[註 2][49]。SARSr-CoV中,與ACE2的結合能力應為多次起源,有學者提出SARS-CoV-2支系病毒的共祖可能可和ACE2結合(RmYN02則是後來才喪失了此能力),後來某個SARS-CoV-2支系的病毒曾和SARS-CoV支系的病毒發生重組,造成部分SARS-CoV支系的病毒也獲得了和ACE2結合的能力[49]

演化

早期的脊索動物已具有ACE2,海鞘尾索動物)與文昌魚頭索動物)皆尚無血管紧张素肾素-血管紧张素系统的多數蛋白,但已具有ACE與ACE2[50]脊椎動物魚類兩生類爬行類鳥類哺乳類)皆具有ACE2,且其結構的保守度很高[46]。此外有些細菌(如野油菜黄单胞菌英语Citrus canker柑橘致病变种)具有和ACE同源的蛋白,體外實驗結果顯示其具有將血管紧张素I切割成血管紧张素II的能力[51],以各生物中的ACE與ACE2序列製作的系統發生樹顯示細菌ACE與海鞘、文昌魚的ACE2關係較為接近,可能是由海鞘的ACE2經水平基因轉移至細菌基因組中[50]

有研究分析哺乳類的ACE2序列,發現有4%的位點(皆位於具有酵素活性的結構域)正發生定向選擇[52]

参见

註腳

  1. ^ ACE2將血管收縮素ⅠI切割為血管收縮素(1-7),是控制組織間血管收縮素濃度的主要蛋白,但還有另一種蛋白中性肽鏈內切酶英语Neprilysin可直接將血管收縮素Ⅰ切割為血管收縮素(1-7)[13][18]
  2. ^ BtKY72BM48-31等在非洲發現的SARSr-CoV病毒株則不具有這兩段序列缺失,但因此區序列和SARS-CoV、SARS-CoV-2的差異較大,仍應無法和ACE2結合[49]

参考文献

  1. ^ 1.0 1.1 1.2 GRCh38: Ensembl release 89: ENSG00000130234 - Ensembl, May 2017
  2. ^ 2.0 2.1 2.2 GRCm38: Ensembl release 89: ENSMUSG00000015405 - Ensembl, May 2017
  3. ^ Human PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  4. ^ Mouse PubMed Reference:. National Center for Biotechnology Information, U.S. National Library of Medicine. 
  5. ^ Kasmi Y, Khataby K, Souiri A. Coronaviridae: 100,000 Years of Emergence and Reemergence. Ennaji MM (编). Emerging and Reemerging Viral Pathogens. Volume 1: Fundamental and Basic Virology Aspects of Human, Animal and Plant Pathogens. Elsevier. 2019: 135 [2021-03-04]. ISBN 978-0-12-819400-3. (原始内容存档于2020-07-24). 
  6. ^ 6.0 6.1 Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N; et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9.. Circ Res. 2000, 87 (5): E1–9. PMID 10969042. doi:10.1161/01.res.87.5.e1. 
  7. ^ Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). Cardiovasc Res. 2007, 73 (3): 463–9 [2008-12-11]. PMID 17049503. (原始内容存档于2009-01-23). 
  8. ^ Weiss SR, Navas-Martin S. Angiotensin-converting enzyme 2--a new cardiac regulator. Microbiol Mol Biol Rev. 2005, 69 (4): 635–64. PMID 16339739. 
  9. ^ 沈媚, 陈冰清, 于瑞嵩, 朱于敏, 李震. 冠状病毒S蛋白及其受体的结构和功能. 微生物学通报. 2017, 44 (10): 2452-2462 [2021-09-12]. (原始内容存档于2022-05-02). 
  10. ^ 10.0 10.1 10.2 Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin-angiotensin system.. Trends Endocrinol Metab. 2004, 15 (4): 166–9 [2021-03-04]. PMC 7128798 . PMID 15109615. doi:10.1016/j.tem.2004.03.001. (原始内容存档于2021-03-04). 
  11. ^ 11.0 11.1 Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T; et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis.. J Biol Chem. 2004, 279 (17): 17996–8007. PMID 14754895. doi:10.1074/jbc.M311191200. 
  12. ^ Turner AJ. Chapter 25: ACE2 Cell Biology, Regulation, and Physiological Functions. Unger T, Ulrike M, Steckelings UM, dos Santos RA (编). The Protective Arm of the Renin Angiotensin System (RAS): Functional Aspects and Therapeutic Implications. Academic Press. 2015: 185–189. ISBN 978-0-12-801364-9. doi:10.1016/B978-0-12-801364-9.00025-0. 
  13. ^ 13.0 13.1 13.2 13.3 13.4 13.5 13.6 Yamamoto K, Takeshita H, Rakugi H. ACE2, angiotensin 1-7 and skeletal muscle: review in the era of COVID-19.. Clin Sci (Lond). 2020, 134 (22): 3047–3062 [2021-03-04]. PMC 7687025 . PMID 33231620. doi:10.1042/CS20200486. (原始内容存档于2021-03-04). 
  14. ^ 14.0 14.1 Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2.. Science. 2020, 367 (6485): 1444–1448 [2021-03-04]. PMC 7164635 . PMID 32132184. doi:10.1126/science.abb2762. (原始内容存档于2021-03-04). 
  15. ^ Kabbani, Nadine; Olds, James L. Does COVID19 infect the brain? If so, smokers might be at a higher risk. Molecular Pharmacology. 1 April 2020, 97 (5): 351–353. PMC 7237865 . PMID 32238438. doi:10.1124/molpharm.120.000014. 
  16. ^ Pedersen KB, Chhabra KH, Nguyen VK, Xia H, Lazartigues E. The transcription factor HNF1α induces expression of angiotensin-converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs.. Biochim Biophys Acta. 2013, 1829 (11): 1225–35 [2021-03-04]. PMC 3838857 . PMID 24100303. doi:10.1016/j.bbagrm.2013.09.007. (原始内容存档于2021-03-04). 
  17. ^ 17.0 17.1 17.2 Jia H, Yue X, Lazartigues E. ACE2 mouse models: a toolbox for cardiovascular and pulmonary research.. Nat Commun. 2020, 11 (1): 5165 [2021-03-04]. PMC 7560817 . PMID 33057007. doi:10.1038/s41467-020-18880-0. (原始内容存档于2021-03-04). 
  18. ^ Domenig O, Manzel A, Grobe N, Königshausen E, Kaltenecker CC, Kovarik JJ; et al. Neprilysin is a Mediator of Alternative Renin-Angiotensin-System Activation in the Murine and Human Kidney.. Sci Rep. 2016, 6: 33678. PMC 5030486 . PMID 27649628. doi:10.1038/srep33678. 
  19. ^ Raizada MK, Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics.. J Cardiovasc Pharmacol. 2007, 50 (2): 112–9 [2021-03-04]. PMID 17703127. doi:10.1097/FJC.0b013e3180986219. (原始内容存档于2021-03-04). 
  20. ^ Uhal BD, Li X, Xue A, Gao X, Abdul-Hafez A. Regulation of alveolar epithelial cell survival by the ACE-2/angiotensin 1-7/Mas axis.. Am J Physiol Lung Cell Mol Physiol. 2011, 301 (3): L269–74 [2021-03-04]. PMC 3174737 . PMID 21665960. doi:10.1152/ajplung.00222.2010. (原始内容存档于2021-03-04). 
  21. ^ 21.0 21.1 Samavati L, Uhal BD. ACE2, Much More Than Just a Receptor for SARS-COV-2.. Front Cell Infect Microbiol. 2020, 10: 317. PMC 7294848 . PMID 32582574. doi:10.3389/fcimb.2020.00317. 
  22. ^ Gopallawa I, Uhal BD. Angiotensin-(1-7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2.. Am J Physiol Lung Cell Mol Physiol. 2016, 310 (3): L240–8. PMC 4888557 . PMID 26637635. doi:10.1152/ajplung.00187.2015. 
  23. ^ Cabello-Verrugio C, Morales MG, Rivera JC, Cabrera D, Simon F. Renin-angiotensin system: an old player with novel functions in skeletal muscle.. Med Res Rev. 2015, 35 (3): 437–63. PMID 25764065. doi:10.1002/med.21343. 
  24. ^ Winslow MA, Hall SE. Muscle wasting: A review of exercise, classical and non-classical RAS axes.. J Cell Mol Med. 2019, 23 (9): 5836–5845. PMC 6714228 . PMID 31273946. doi:10.1111/jcmm.14412. 
  25. ^ Morales MG, Abrigo J, Meneses C, Cisternas F, Simon F, Cabello-Verrugio C. Expression of the Mas receptor is upregulated in skeletal muscle wasting.. Histochem Cell Biol. 2015, 143 (2): 131–41 [2021-03-04]. PMID 25208653. doi:10.1007/s00418-014-1275-1. (原始内容存档于2021-03-04). 
  26. ^ Riquelme C, Acuña MJ, Torrejón J, Rebolledo D, Cabrera D, Santos RA; et al. ACE2 is augmented in dystrophic skeletal muscle and plays a role in decreasing associated fibrosis.. PLoS One. 2014, 9 (4): e93449 [2021-03-04]. PMC 3973684 . PMID 24695436. doi:10.1371/journal.pone.0093449. (原始内容存档于2021-03-04). 
  27. ^ Mirabito Colafella, Katrina M.; Uijl, Estrellita; Jan Danser, A.H. Interference With the Renin–Angiotensin System (RAS): Classical Inhibitors and Novel Approaches: 523–530. 2019. doi:10.1016/B978-0-12-801238-3.65341-2. 
  28. ^ Yang P, Kuc RE, Brame AL, Dyson A, Singer M, Glen RC; et al. [Pyr1]Apelin-13(1-12) Is a Biologically Active ACE2 Metabolite of the Endogenous Cardiovascular Peptide [Pyr1]Apelin-13.. Front Neurosci. 2017, 11: 92 [2021-03-04]. PMC 5329011 . PMID 28293165. doi:10.3389/fnins.2017.00092. (原始内容存档于2021-03-04). 
  29. ^ Nicholls J, Peiris M. Good ACE, bad ACE do battle in lung injury, SARS.. Nat Med. 2005, 11 (8): 821–2. PMC 7095949 . PMID 16079870. doi:10.1038/nm0805-821. 
  30. ^ Schmoldt A, Benthe HF, Haberland G. Digitoxin metabolism by rat liver microsomes.. Biochem Pharmacol. 1975, 24 (17): 1639–41 [2021-03-04]. doi:10.1371/journal.pone.0034747. (原始内容存档于2021-03-04). 
  31. ^ Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI, et al. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). The Journal of Biological Chemistry. August 2005, 280 (34): 30113–9. PMID 15983030. doi:10.1074/jbc.M505111200. 
  32. ^ Patel VB, Clarke N, Wang Z, Fan D, Parajuli N, Basu R, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. Journal of Molecular and Cellular Cardiology. January 2014, 66: 167–76. PMID 24332999. doi:10.1016/j.yjmcc.2013.11.017. 
  33. ^ Lambert DW, Clarke NE, Hooper NM, Turner AJ. Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain.. FEBS Lett. 2008, 582 (2): 385–90. PMC 7094239 . PMID 18070603. doi:10.1016/j.febslet.2007.11.085. 
  34. ^ Xu P, Derynck R. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation.. Mol Cell. 2010, 37 (4): 551–66. PMC 4240279 . PMID 20188673. doi:10.1016/j.molcel.2010.01.034. 
  35. ^ Patel VB, Zhong JC, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure.. Circ Res. 2016, 118 (8): 1313–26 [2021-03-04]. PMC 4939482 . PMID 27081112. doi:10.1161/CIRCRESAHA.116.307708. (原始内容存档于2021-03-04). 
  36. ^ Gene: ACE2, angiotensin I converting enzyme 2. National Center for Biotechnology Information (NCBI). U.S. National Library of Medicine. 2020-02-28 [2021-02-22]. (原始内容存档于2014-12-24). 
  37. ^ Xiong, Q., Cao, L., Ma, C.; et al. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors. Nature. 2022, 612: 748–757. doi:10.1038/s41586-022-05513-3. 
  38. ^ Fehr AR, Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Coronaviruses. Methods in Molecular Biology 1282. Springer New York. 2015: 1–23. ISBN 978-1-4939-2437-0. PMC 4369385 . PMID 25720466. doi:10.1007/978-1-4939-2438-7_1. Many α-coronaviruses utilize aminopeptidase N (APN) as their receptor, SARS-CoV and HCoV-NL63 use angiotensin-converting enzyme 2 (ACE2) as their receptor, MHV enters through CEACAM1, and the recently identified MERS-CoV binds to dipeptidyl-peptidase 4 (DPP4) to gain entry into human cells (See Table 1 for a list of known CoV receptors). 
  39. ^ Li F. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Research. October 2013, 100 (1): 246–54. PMC 3840050 . PMID 23994189. doi:10.1016/j.antiviral.2013.08.014. 
  40. ^ What are the official names of the disease and the virus that causes it?. Q&A on coronaviruses. World Health Organization. [22 February 2020]. (原始内容存档于2020-03-05). 
  41. ^ Akhmerov Akbarshakh; Marban Eduardo. COVID-19 and the Heart. Circulation Research. 2020, 0 (10): 1443–1455. PMC 7188058 . PMID 32252591. doi:10.1161/CIRCRESAHA.120.317055. 
  42. ^ Ou X, Liu Y, Lei X, Li P, Mi D, Ren L; et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV.. Nat Commun. 2020, 11 (1): 1620 [2021-03-04]. PMC 7100515 . PMID 32221306. doi:10.1038/s41467-020-15562-9. (原始内容存档于2021-03-04). 
  43. ^ Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Research. February 2008, 18 (2): 290–301. PMC 7091891 . PMID 18227861. doi:10.1038/cr.2008.15. 
  44. ^ Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. April 2018, 517: 3–8. PMC 7112017 . PMID 29275820. doi:10.1016/j.virol.2017.12.015. 
  45. ^ Huang IC, Bosch BJ, Li F, Li W, Lee KH, Ghiran S; et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells.. J Biol Chem. 2006, 281 (6): 3198–203 [2021-03-04]. PMID 16339146. doi:10.1074/jbc.M508381200. (原始内容存档于2021-03-04). 
  46. ^ 46.0 46.1 46.2 Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV.. Biochem Biophys Res Commun. 2020. PMC 7092824 . PMID 32081428. doi:10.1016/j.bbrc.2020.02.071. 
  47. ^ Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2.. Nat Med. 2020, 26 (4): 450–452 [2021-03-04]. PMC 7095063 . PMID 32284615. doi:10.1038/s41591-020-0820-9. (原始内容存档于2021-03-04). 
  48. ^ Shang J, Wan Y, Luo C, Ye G, Geng Q, Auerbach A; et al. Cell entry mechanisms of SARS-CoV-2.. Proc Natl Acad Sci U S A. 2020, 117 (21): 11727–11734. PMC 7260975 . PMID 32376634. doi:10.1073/pnas.2003138117. 
  49. ^ 49.0 49.1 49.2 Wells, H L; Letko, M; Lasso, G; Ssebide, B; Nziza, J; Byarugaba, D K; Navarrete-Macias, I; Liang, E; et al. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Virus Evolution. 2021. ISSN 2057-1577. doi:10.1093/ve/veab007. 
  50. ^ 50.0 50.1 Fournier D, Luft FC, Bader M, Ganten D, Andrade-Navarro MA. Emergence and evolution of the renin-angiotensin-aldosterone system.. J Mol Med (Berl). 2012, 90 (5): 495–508. PMC 3354321 . PMID 22527880. doi:10.1007/s00109-012-0894-z. 
  51. ^ Rivière G, Michaud A, Corradi HR, Sturrock ED, Ravi Acharya K, Cogez V; et al. Characterization of the first angiotensin-converting like enzyme in bacteria: Ancestor ACE is already active.. Gene. 2007, 399 (1): 81–90. PMC 7127174 . PMID 17597310. doi:10.1016/j.gene.2007.05.010. 
  52. ^ Bibiana S O F, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC. ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2.. Genet Mol Biol. 2020, 43 (2): e20200104. PMC 7278419 . PMID 32520981. doi:10.1590/1678-4685-GMB-2020-0104. 

外部連結