3-磷酸甘油酸
此条目缺少或没有列出参考或来源,或者有未能查证的内容。 (2009年10月2日) |
此条目可参照英语维基百科相应条目来扩充。 (2015年8月25日) |
3-磷酸甘油酸(英语:3-phosphoglycerate, 3PG或glycerate 3-phosphate GP)是生物细胞中常见的分子之一,也是糖解作用与卡尔文循环过程里的中间产物。(注:在卡尔文循环当中简写为PGA)
3-磷酸甘油酸 | |
---|---|
IUPAC名 (2R)-2-Hydroxy-3-phosphonooxypropanoic acid | |
识别 | |
CAS号 | 820-11-1 |
PubChem | 439183 |
ChemSpider | 388326 |
SMILES |
|
ChEBI | 17794 |
性质 | |
化学式 | C3H7O7P |
摩尔质量 | 186.06 g·mol−1 |
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。 |
在糖解作用中,3-磷酸甘油酸是由1,3-双磷酸甘油酸在磷酸甘油酸激酶(Phosphoglycerate kinase)的催化中产生的。每一分子3-双磷酸甘油酸会使一分子的ADP转变成为的ATP,原理是接在1,3-双磷酸甘油酸上的两个磷酸根,其中有一个转移到ADP之上。这个反应需要镁离子(Mg2+)的帮助。
接下来3-磷酸甘油酸将会在磷酸甘油酸变位酶(Phosphoglycerate)的催化下生成2-磷酸甘油酸,在此反应中,原本接在3-磷酸甘油酸,即己催化,下生成2-磷酸甘油酸的碳上的磷酸根,将会转移到变位酶上;然后原本在变位酶上的磷酸根,则会接到3-磷酸甘油酸的碳上,反应前后的变位酶整体结构没有变化。与上一步骤相同,此反应同样需要Mg2+
糖酵解
在糖酵解途径中,1,3-二磷酸甘油酸在偶联反应中去磷酸化形成 3-磷酸甘油酸,通过底物水平磷酸化产生两个ATP 。 [1] 然后,3-PGA 分子上留下的单个磷酸基团从末端碳移动到中心碳,产生 2-磷酸甘油酸酯。这种磷酸基重定位由磷酸甘油酸变位酶催化,该酶也催化逆反应。 [2]
卡尔文-本森循环
在不依赖于光的反应(也称为卡尔文-本森循环)中,合成了两个 3-磷酸甘油酸分子。 RuBP是一种 5 碳糖,在rubisco酶的催化下进行碳固定,变成不稳定的 6 碳中间体。 然后,该中间体被裂解成两个独立的 3-碳 3-PGA 分子。 [3] 所得 3-PGA 分子之一继续通过 Calvin-Benson 循环再生为 RuBP,而另一个则通过两个步骤还原形成一分子甘油醛 3-磷酸(G3P):将 3-PGA磷酸化为1, 3-二磷酸甘油酸通过磷酸甘油酸激酶(与糖酵解中的反应相反)生成,随后由甘油醛 3-磷酸脱氢酶催化生成 G3P。 [4] [5] [6] G3P 最终反应形成糖,如葡萄糖或果糖或更复杂的淀粉。 [7] :156[4] [5]
氨基酸合成
3-磷酸甘油酯(由 3-磷酸甘油酸形成)也是丝氨酸的前体,丝氨酸反过来又可以通过同型半胱氨酸循环产生半胱氨酸和甘氨酸。 [8] [9] [10]
测量
3-磷酸甘油酸可以使用纸色谱[11]以及柱色谱和其他色谱分离方法来分离和测量。 [12] 它可以使用气相色谱法和液相色谱质谱法进行鉴定,并已针对使用串联质谱技术的评估进行了优化。 [13] [14] [15]
参考文献
- ^ Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael. https://openstax.org/books/biology/pages/7-2-glycolysis
|chapterurl=
缺少标题 (帮助). Glycolysis. OpenStax College. 2016 [2023-08-28]. (原始内容存档于2014-05-30).Rye, Connie; Wise, Robert; Jurukovski, Vladimir; DeSaix, Jean; Choi, Jung; Avissar, Yael (2016). "Glycolysis" (页面存档备份,存于互联网档案馆). Biology (页面存档备份,存于互联网档案馆). OpenStax College. - ^ Rose, Z.B.; Dube, S. Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase. Journal of Biological Chemistry. 1976, 251 (16): 4817–4822. PMID 8447. doi:10.1016/S0021-9258(17)33188-5 .Rose, Z.B.; Dube, S. (1976). "Rates of phosphorylation and dephosphorylation of phosphoglycerate mutase and bisphosphoglycerate synthase". Journal of Biological Chemistry. 251 (16): 4817–4822. doi:10.1016/S0021-9258(17)33188-5. PMID 8447 (页面存档备份,存于互联网档案馆).
- ^ Andersson, I. Catalysis and regulation in Rubisco. Journal of Experimental Botany. 2008, 59 (7): 1555–1568. PMID 18417482. doi:10.1093/jxb/ern091 .Andersson, I. (2008). "Catalysis and regulation in Rubisco". Journal of Experimental Botany. 59 (7): 1555–1568. doi:10.1093/jxb/ern091. PMID 18417482 (页面存档备份,存于互联网档案馆).
- ^ 4.0 4.1 Moran, L. The Calvin Cycle: Regeneration. Sandwalk. 2007 [11 May 2021]. (原始内容存档于2022-09-27).Moran, L. (2007). "The Calvin Cycle: Regeneration" (页面存档备份,存于互联网档案馆). Sandwalk. Retrieved 11 May 2021.
- ^ 5.0 5.1 Pettersson, G.; Ryde-Pettersson, Ulf. A mathematical model of the Calvin photosynthesis cycle. European Journal of Biochemistry. 1988, 175 (3): 661–672. PMID 3137030. doi:10.1111/j.1432-1033.1988.tb14242.x.Pettersson, G.; Ryde-Pettersson, Ulf (1988). "A mathematical model of the Calvin photosynthesis cycle". European Journal of Biochemistry. 175 (3): 661–672. doi:10.1111/j.1432-1033.1988.tb14242.x. PMID 3137030 (页面存档备份,存于互联网档案馆).
- ^ Fridlyand, L.E.; Scheibe, R. Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles. Biosystems. 1999, 51 (2): 79–93. PMID 10482420. doi:10.1016/S0303-2647(99)00017-9.Fridlyand, L.E.; Scheibe, R. (1999). "Regulation of the Calvin cycle for CO2 fixation as an example for general control mechanisms in metabolic cycles". Biosystems. 51 (2): 79–93. doi:10.1016/S0303-2647(99)00017-9. PMID 10482420 (页面存档备份,存于互联网档案馆).
- ^ Leegood, R.C.; Sharkey, T.D.; von Caemmerer, S. (编). Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis 9. Kluwer Academic Publishers. 2000. ISBN 978-0-7923-6143-5. doi:10.1007/0-306-48137-5.Leegood, R.C.; Sharkey, T.D.; von Caemmerer, S., eds. (2000). Photosynthesis: Physiology and Metabolism. Advances in Photosynthesis. Vol. 9. Kluwer Academic Publishers. doi:10.1007/0-306-48137-5. ISBN 978-0-7923-6143-5.
- ^ Igamberdiev, A.U.; Kleczkowski, L.A. The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism. Frontiers in Plant Science. 2018, 9 (318): 318. PMC 5861185 . PMID 29593770. doi:10.3389/fpls.2018.00318 .Igamberdiev, A.U.; Kleczkowski, L.A. (2018). "The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants: The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism" (页面存档备份,存于互联网档案馆). Frontiers in Plant Science. 9 (318): 318. doi:10.3389/fpls.2018.00318. PMC 5861185 (页面存档备份,存于互联网档案馆). PMID 29593770 (页面存档备份,存于互联网档案馆).
- ^ Ichihara, A.; Greenberg, D.M. Pathway of Serine Formation from Carbohydrate in Rat Liver. PNAS. 1955, 41 (9): 605–609. Bibcode:1955PNAS...41..605I. JSTOR 89140. PMC 528146 . PMID 16589713. doi:10.1073/pnas.41.9.605 .Ichihara, A.; Greenberg, D.M. (1955). "Pathway of Serine Formation from Carbohydrate in Rat Liver" (页面存档备份,存于互联网档案馆). PNAS. 41 (9): 605–609. Bibcode:1955PNAS...41..605I (页面存档备份,存于互联网档案馆). doi:10.1073/pnas.41.9.605. JSTOR 89140 (页面存档备份,存于互联网档案馆). PMC 528146 (页面存档备份,存于互联网档案馆). PMID 16589713 (页面存档备份,存于互联网档案馆).
- ^ Hanford, J.; Davies, D.D. Formation of Phosphoserine from 3-Phosphoglycerate in Higher Plants. Nature. 1958, 182 (4634): 532–533. Bibcode:1958Natur.182..532H. S2CID 4192791. doi:10.1038/182532a0.Hanford, J.; Davies, D.D. (1958). "Formation of Phosphoserine from 3-Phosphoglycerate in Higher Plants". Nature. 182 (4634): 532–533. Bibcode:1958Natur.182..532H (页面存档备份,存于互联网档案馆). doi:10.1038/182532a0. S2CID 4192791.
- ^ Cowgill, R.W.; Pizer, L.I. Purification and Some Properties of Phosphorylglyceric Acid Mutase from Rabbit Skeletal Muscle. Journal of Biological Chemistry. 1956, 223 (2): 885–895. PMID 13385236. doi:10.1016/S0021-9258(18)65087-2 .Cowgill, R.W.; Pizer, L.I. (1956). "Purification and Some Properties of Phosphorylglyceric Acid Mutase from Rabbit Skeletal Muscle". Journal of Biological Chemistry. 223 (2): 885–895. doi:10.1016/S0021-9258(18)65087-2. PMID 13385236 (页面存档备份,存于互联网档案馆).
- ^ Hofer, H.W. Separation of glycolytic metabolites by column chromatography. Analytical Biochemistry. 1974, 61 (1): 54–61. PMID 4278264. doi:10.1016/0003-2697(74)90332-7.Hofer, H.W. (1974). "Separation of glycolytic metabolites by column chromatography". Analytical Biochemistry. 61 (1): 54–61. doi:10.1016/0003-2697(74)90332-7. PMID 4278264 (页面存档备份,存于互联网档案馆).
- ^ 3-Phosphoglyceric acid (HMDB0000807). Human Metabolome Database. The Metabolomics Innovation Centre. [23 May 2021]. (原始内容存档于2023-07-06)."3-Phosphoglyceric acid (HMDB0000807)" (页面存档备份,存于互联网档案馆). Human Metabolome Database. The Metabolomics Innovation Centre. Retrieved 23 May 2021.
- ^ Shibayama, J.; Yuzyuk, T.N.; Cox, J.; et al. Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study. PLOS ONE. 2015, 10 (3): e0118974. Bibcode:2015PLoSO..1018974S. PMC 4366225 . PMID 25790351. doi:10.1371/journal.pone.0118974 .Shibayama, J.; Yuzyuk, T.N.; Cox, J.; et al. (2015). "Metabolic Remodeling in Moderate Synchronous versus Dyssynchronous Pacing-Induced Heart Failure: Integrated Metabolomics and Proteomics Study". PLOS ONE. 10 (3): e0118974. Bibcode:2015PLoSO..1018974S (页面存档备份,存于互联网档案馆). doi:10.1371/journal.pone.0118974. PMC 4366225. PMID 25790351 (页面存档备份,存于互联网档案馆).
- ^ Xu, J.; Zhai, Y.; Feng, L. An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines. Journal of Pharmaceutical and Biomedical Analysis. 2019, 171: 171–179. PMID 31005043. S2CID 125170446. doi:10.1016/j.jpba.2019.04.022.Xu, J.; Zhai, Y.; Feng, L. (2019). "An optimized analytical method for cellular targeted quantification of primary metabolites in tricarboxylic acid cycle and glycolysis using gas chromatography-tandem mass spectrometry and its application in three kinds of hepatic cell lines". Journal of Pharmaceutical and Biomedical Analysis. 171: 171–179. doi:10.1016/j.jpba.2019.04.022. PMID 31005043 (页面存档备份,存于互联网档案馆). S2CID 125170446.