双曲函数

與三角函數類似的函數
(重定向自双曲正切

数学中,双曲函数是一类与常见的三角函数(也叫圆函数)类似的函数。最基本的双曲函数是雙曲正弦函数雙曲餘弦函数,从它们可以导出双曲正切函数等,其推导也类似于三角函数的推导。双曲函数的反函数称为反双曲函数

射線出原點交單位雙曲線於點,這裡的是射線、雙曲線和x軸圍成的面積的二倍。對於雙曲線上位於x軸下方的點,這個面積被認為是負值
雙曲函數示意圖
幾個雙曲函數的圖形。

双曲函数的定义域是实数,其自变量的值叫做双曲角。双曲函数出现于某些重要的线性微分方程的解中,譬如說定义悬链线拉普拉斯方程

基本定义

 
sinhcoshtanh
 
cschsechcoth

最簡單的幾種雙曲函數為[1]

  • 雙曲正弦
     
  • 雙曲餘弦
     
  • 雙曲正切:
     
  • 雙曲餘切:當 
     
  • 雙曲正割:
     
  • 雙曲餘割:當 
     

函数 是关于y轴对称的偶函数。函数 奇函数

如同当 遍历实数集 时,点( ,  )的轨迹是一个 一样,当 遍历实数集 时,点( ,  )的轨迹是單位雙曲線英语Unit hyperbola 的右半边。这是因为有以下的恒等式:

 

参数t不是圆而是双曲角,它表示在x轴和连接原点和双曲线上的点( ,  )的直线之间的面积的两倍。

歷史

 
直角雙曲線(方程 )下,雙曲線三角形(黃色),和對應於雙曲角u雙曲線扇形(紅色)。這個三角形的邊分別是雙曲函數   倍。

在18世紀,約翰·海因里希·蘭伯特引入雙曲函數[2],並計算了雙曲幾何雙曲三角形的面積[3]自然對數函數是在直角雙曲線 下定義的,可構造雙曲線直角三角形,底邊在線 上,一個頂點是原點,另一個頂點在雙曲線。這裡以自然對數即雙曲角作為參數的函數,是自然對數的逆函數指數函數,即要形成指定雙曲角 ,在漸近線即x或y軸上需要有的  的值。顯見這裡的底邊是 ,垂線是 

通過旋轉和縮小線性變換,得到單位雙曲線下的情況,有:

  •  
  •  

單位雙曲線中雙曲線扇形的面積是對應直角雙曲線 下雙曲角的 

虛數圓角定義

雙曲角經常定義得如同虛數圓角。實際上,如果 是實數而 ,則

   

所以雙曲函數  可以通過圓函數來定義。這些恆等式不是從圓或旋轉得來的,它們應當以無窮級數的方式來理解。特別是,可以將指數函數表達為由偶次項和奇次項組成,前者形成 函數,後者形成了 函數。 函數的無窮級數可從 得出,通過把它變為交錯級數,而 函數可來自將 變為交錯級數。上面的恆等式使用虛數 ,從三角函數的級數的項中去掉交錯因子 ,來恢復為指數函數的那兩部份級數。

 
 

雙曲函數可以通過虛數圓角定義為:

  • 雙曲正弦[1]
     
  • 雙曲餘弦[1]
     
  • 雙曲正切:
     
  • 雙曲餘切:
     
  • 雙曲正割:
     
  • 雙曲餘割:
     

這些複數形式的定義得出自歐拉公式

與三角函數的類比

奧古斯都·德·摩根在其1849年出版的教科書《Trigonometry and Double Algebra》中將圓三角學擴展到了雙曲線[4]威廉·金頓·克利福德在1878年使用雙曲角來參數化單位雙曲線

   

給定相同的角α,在雙曲線上計算雙曲角的量值(雙曲扇形面積除以半徑)得到雙曲函數,角 得到三角函數。在單位圓單位雙曲線上,双曲函数与三角函数有如下的关係:

恆等式

与双曲函数有关的恆等式如下:

 
  • 加法公式:
 
 
 
  • 二倍角公式:
 
 
 
  • 和差化積:

 

  • 半角公式:
 
 
 
其中 sgn符號函數
x ≠ 0,則:
 

由于雙曲函數和三角函数之间的对应关系,雙曲函數的恆等式和三角函數的恒等式之间也是一一对应的。对于一个已知的三角函数公式,只需要將其中的三角函數轉成相應的雙曲函數,并将含有有兩個 的積的项(包括 )轉換正負號,就可得到相應的雙曲函數恆等式[5]。如

  • 三倍角公式:
三角函数的三倍角公式为:
 
 
而对应的双曲函数三倍角公式则是:
 
 
  • 差角公式:
 

双曲函数的導數

 

双曲函数的泰勒展開式

雙曲函數也可以以泰勒級數展開:

 
 
 
 罗朗级数
 
 罗朗级数

其中

 是第 伯努利數
 是第 欧拉數

無限積與連續分數形式

下列的擴展在整個複數平面上成立:

 
 
 

双曲函数的积分

 
 
 
 
 
 

與指數函數的關係

從雙曲正弦和餘弦的定義,可以得出如下恆等式:

 

 

複數的雙曲函數

因為指數函數可以定義為任何複數參數,也可以擴展雙曲函數的定義為複數參數。函數  全純函數

指數函數與三角函數的關係由歐拉公式給出:

 

所以:

 
 
 

因此,雙曲函數是關於虛部有週期的,週期為 (對雙曲正切和餘切是 )。

反双曲函数

反双曲函数是双曲函数的反函数。它们的定义为:

 

参考文献

  1. ^ 1.0 1.1 1.2 Weisstein, Eric W. (编). Hyperbolic Functions. at MathWorld--A Wolfram Web Resource. Wolfram Research, Inc. [2020-08-29]. (原始内容存档于2022-05-21) (英语). 
  2. ^ Eves, Howard, Foundations and Fundamental Concepts of Mathematics, Courier Dover Publications: 59, 2012, ISBN 9780486132204, We also owe to Lambert the first systematic development of the theory of hyperbolic functions and, indeed, our present notation for these functions. 
  3. ^ Ratcliffe, John, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149, Springer: 99, 2006 [2014-03-27], ISBN 9780387331973, (原始内容存档于2014-01-12), That the area of a hyperbolic triangle is proportional to its angle defect first appeared in Lambert's monograph Theorie der Parallellinien, which was published posthumously in 1786. 
  4. ^ Augustus De Morgan (1849) Trigonometry and Double Algebra页面存档备份,存于互联网档案馆), Chapter VI: "On the connection of common and hyperbolic trigonometry"
  5. ^ G. Osborn, Mnemonic for hyperbolic formulae[失效連結], The Mathematical Gazette, p. 189, volume 2, issue 34, July 1902

参见