勒让德猜想

勒让德猜想(Legendre's conjecture)是阿德里安-马里·勒让德提出对整数猜想,其内容是在平方数之间,至少有一个质数。此猜想是兰道问题英语Landau's problems(1912年)中有关质数的一个问题。截至2023年 (2023-Missing required parameter 1=month!)为止,还没有人可以证明此猜想成立,也没有人找到此猜想的反证。

之间的质数A014085

质数间隙

若勒让德猜想为真,那么在大O符号的意义下,质数p及相邻质数的最大间隙就会是 [a]

该猜想是一类与质数间隙相关的猜想和结果的其中一员。其他属于这一类的猜想和结果包括了已经得证并认为在  必存在一个质数的伯特兰-切比雪夫定理、尚未得证并认为在   等之间存在质数的奥珀曼猜想、尚未得证并与两相邻质数间是否存在质数相关的安德里卡猜想布罗卡猜想,以及尚未得证并认为质数间隙总是远小于勒让德猜想且和 成比例的克拉梅尔猜想等等。

在克拉梅尔猜想成立的状况下,勒让德猜想对任何足够大的 都成立。另外,哈拉尔德·克拉梅尔还证明了一个较弱的结果,从黎曼猜想可推出最大质数间隙的上界为 [1]

根据质数定理,介于  之间的质数的数量的期望值大约为 ;此外,已知对几乎所有的此类区间而言,其实际的质数个数(A014085)与该期望值呈现非病态关系。[2]由于对于较大的 而言,该数字也会很大之故,这提供了勒让德猜想成立的证据。[3]


另外已知质数定理可无条件地[4]或在黎曼猜想成立的状况下[5],给出对短区间内质数个数的精确估计;然而已证明可行的区间大小大于两个完全平方数构成的区间,因此就勒让德猜想而言依旧太大。

部分结果

艾伯特·英厄姆英语Albert Ingham对质数间隙的结果可得出,对于足够大的 而言,在完全立方数  之间总有一个质数。[6]

R·C·贝克(R. C. Baker)、格林·哈曼英语Glyn Harman平茨·亚诺什匈牙利语Pintz János证明了对于所有大的 而言, 该区间内总有一个质数。[7]

利用最大质数间隙表,可确认勒让德猜想至少对大到 的数都成立,也就是说勒让德猜想对大到 的数都成立。[8]

参见

注解

  1. ^ 这是从两个完全平方数的差会是其平方根的事实推导出的。

参考资料

  1. ^ Stewart, Ian, Visions of Infinity: The Great Mathematical Problems, Basic Books: 164, 2013, ISBN 9780465022403 .
  2. ^ Bazzanella, Danilo, Primes between consecutive squares (PDF), Archiv der Mathematik, 2000, 75 (1): 29–34 [2024-01-09], MR 1764888, S2CID 16332859, doi:10.1007/s000130050469, (原始内容存档 (PDF)于2017-08-28) 
  3. ^ Francis, Richard L., Between consecutive squares, Missouri Journal of Mathematical Sciences (University of Central Missouri, Department of Mathematics and Computer Science), February 2004, 16 (1): 51–57, doi:10.35834/2004/1601051  ; see p. 52, "It appears doubtful that this super-abundance of primes can be clustered in such a way so as to avoid appearing at least once between consecutive squares."
  4. ^ Heath-Brown, D. R., The number of primes in a short interval (PDF), Journal für die Reine und Angewandte Mathematik, 1988, 1988 (389): 22–63 [2024-01-09], MR 0953665, S2CID 118979018, doi:10.1515/crll.1988.389.22, (原始内容存档 (PDF)于2019-05-02) 
  5. ^ Selberg, Atle, On the normal density of primes in small intervals, and the difference between consecutive primes, Archiv for Mathematik og Naturvidenskab, 1943, 47 (6): 87–105, MR 0012624 
  6. ^ A060199
  7. ^ Baker, R. C.; Harman, G.; Pintz, J., The difference between consecutive primes, II (PDF), Proceedings of the London Mathematical Society, 2001, 83 (3): 532–562, S2CID 8964027, doi:10.1112/plms/83.3.532 
  8. ^ Oliveira e Silva, Tomás; Herzog, Siegfried; Pardi, Silvio, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to   (PDF), Mathematics of Computation, 2014, 83 (288): 2033–2060, MR 3194140, doi:10.1090/S0025-5718-2013-02787-1  .

外部链接