蓝丝黛尔石
蓝丝黛尔石(英语:Lonsdaleite)也译做郎士德碳,又因晶体结构及特性称作六方金刚石(英语:hexagonal diamond)、六方碳。蓝丝黛尔石是一种六方晶系的金刚石,属于碳同素异形体的一种构形,咸信为流星上的石墨在坠入地球时所形成。撞击时的巨大压力及热量改变石墨构形形成金刚石,却又保留了石墨的平行六边形晶格,并构成了立方的六方晶格。第一次鉴别出蓝丝黛尔石是1967年在美国亚利桑那州的巴林杰陨石坑[4],从位在其中的“魔谷陨石”中所发现,并以20世纪的爱尔兰晶体学家和英国皇家学会凯瑟琳·朗斯代尔(Kathleen Lonsdale)命名,因她使用X射线研究了碳的结构。
蓝丝黛尔石 | |
---|---|
基本资料 | |
类别 | 自然元素矿物 |
化学式 | C |
施特龙茨分类 | 01.CB.10b |
晶体分类 | 双六方二锥 (6/mmm) 赫尔曼–莫甘记号: (6/m 2/m 2/m) |
晶体空间群 | P63/mmc |
晶胞 | a = 2.51 Å, c = 4.12 Å; Z=4 |
性质 | |
颜色 | 晶体为灰色,断片为苍黄色至棕色 |
晶系 | 六方晶系 |
莫氏硬度 | 7-8 |
光泽 | 金刚光泽 |
透明性 | 透明 |
比重 | 3.2 |
光学性质 | 单轴(+/-) |
折射率 | n = 2.404 |
参考文献 | [1][2][3] |
蓝丝黛尔石具有透明棕黄色的外观,折射率在2.40至2.41之间,比重在3.2至3.3之间。它的莫氏硬度在7至8之间,而金刚石的莫氏硬度则为10。蓝丝黛尔石较低的硬度主要原因是因为天然形成矿石不纯且不完美所致。但如果以人工合成则比钻石硬58%,而抗压程度也比钻石高了大约58%。[5]
蓝丝黛尔石也已经在实验室中(1966年或更早; 1967年出版[6])被合成,方法是在静态压力机或炸药中压缩和加热石墨[7]。
硬度
矿物学模拟预测蓝丝黛尔石在<100>面上比钻石硬58%,能抵抗152 GPa的压入压力,而钻石在压入到97 GPa时就会断裂。[8]IIa钻石的<111>尖端硬度则为162 GPa,超过了这个值。
蓝丝黛尔石的外推特性受到质疑,特别是其极高的硬度,因为在晶体学检查下的样品没有显示出块状六方晶格结构,而是结构缺陷主要是六边形结构的传统的立方钻石结构。[9]对蓝丝黛尔石的X射线衍射数据的定量分析表明,它存在大约等量的六方和立方堆积序列。因此,有人提出“堆叠无序的钻石”是对蓝丝黛尔石最准确的结构描述。[10]另一方面,最近使用原位X射线衍射进行的冲击实验表明,在与陨石撞击相当的动态高压环境中会产生相对较纯的蓝丝黛尔石。[11][12]
存在
蓝丝黛尔石存在于陨石的金刚石上,是一个连结在金刚石上非肉眼可见的显微晶体。除魔谷陨石外,在美国新墨西哥州的“肯纳陨石”(Kenna meteorite)、南极洲维多利亚地的艾伦丘陵陨石77283(Allan Hills (ALH) 77283)上亦有发现。[13]有争议的克洛维斯彗星假说支持者发现,在墨西哥瓜纳华托州奎采奥湖的沉积物中发现了d间距与蓝丝黛尔石一致的材料。[14]此外,蓝丝黛尔石存在于当地的泥炭沉积物中,被认为是通古斯大爆炸是由流星而非彗星碎片引起的证据。[15][16]
合成
除了通过加压或使用炸药压缩和加热石墨,[17][18]蓝丝黛尔石也可以通过化学气相沉积[19][20][21]或是聚合物聚甲炔在1,000 °C(1,832 °F)的氩气气氛下热分解而成。[22][23]
2020年,澳大利亚国立大学的研究人员偶然发现使用金刚石压砧就可以在室温下生产蓝丝黛尔石。[24][25]
2021年,华盛顿州立大学的冲击物理研究所发表了一篇论文,称他们创造了足够大的蓝丝黛尔石晶体来测量其硬度,证实它们比普通的立方钻石更坚硬。[26]
参见
参考
- ^ Lonsdaleite on Mindat.org. [2005-09-10]. (原始内容存档于2021-03-31).
- ^ Handbook of Mineralogy (PDF). [2013-02-11]. (原始内容存档 (PDF)于2012-03-30).
- ^ Lonsdaleite data from Webmineral. [2005-09-10]. (原始内容存档于2021-03-31).
- ^ 存档副本. [2005-09-10]. (原始内容存档于2006-10-11).
- ^ Carlomagno, G.M.; Brebbia, C.A. Computational Methods and Experimental Measurements XV. WIT Press. 2011. ISBN 978-1-84564-540-3.
- ^ Bundy, F. P.; Kasper, J. S. Hexagonal Diamond—A New Form of Carbon. Journal of Chemical Physics. 1967, 46 (9): 3437. Bibcode:1967JChPh..46.3437B. doi:10.1063/1.1841236.
- ^ He, Hongliang; Sekine, T.; Kobayashi, T. Direct transformation of cubic diamond to hexagonal diamond. Applied Physics Letters. 2002, 81 (4): 610. Bibcode:2002ApPhL..81..610H. doi:10.1063/1.1495078.
- ^ Pan, Zicheng; Sun, Hong; Zhang, Yi & Chen, Changfeng. Harder than diamond: Superior indentation strength of wurtzite BN and lonsdaleite. Physical Review Letters. 2009, 102 (5): 055503. Bibcode:2009PhRvL.102e5503P. PMID 19257519. doi:10.1103/PhysRevLett.102.055503. 简明摘要 – Physorg.com (12 February 2009).
- ^ Nemeth, P.; Garvie, L.A.J.; Aoki, T.; Natalia, D.; Dubrovinsky, L.; Buseck, P.R. Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nature Communications. 2014, 5: 5447. Bibcode:2014NatCo...5.5447N. PMID 25410324. doi:10.1038/ncomms6447 .
- ^ Salzmann, C.G.; Murray, B.J.; Shephard, J.J. Extent of stacking disorder in diamond. Diamond and Related Materials. 2015, 59: 69–72 [2021-12-21]. Bibcode:2015DRM....59...69S. S2CID 53416525. arXiv:1505.02561 . doi:10.1016/j.diamond.2015.09.007. (原始内容存档于2021-12-21).
- ^ Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D.O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L.B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E.J.; Goede, S.; Granados, E.; Gregori, G.; Lee, H.J.; Neumayer, P.; Schumaker, W.; Doeppner, T.; Falcone, R.W.; Glenzer, S.H.; Roth, M. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nature Communications. 2016, 7: 10970. Bibcode:2016NatCo...710970K. PMC 4793081 . PMID 26972122. doi:10.1038/ncomms10970.
- ^ Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J.M.; Gupta, Yogendra M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Science Advances. 2017-10-01, 3 (10): eaao3561. ISSN 2375-2548. PMC 5659656 . PMID 29098183. doi:10.1126/sciadv.aao3561.
- ^ Kaminskii, F.V.; G.K. Blinova; E.M. Galimov; G.A. Gurkina; Y.A. Klyuev; L.A. Kodina; V.I. Koptil; V.F. Krivonos; L.N. Frolova; A.Y. Khrenov. Polycrystalline aggregates of diamond with lonsdaleite from Yakutian [Sakhan] placers. Mineral. Zhurnal. 1985, 7: 27–36.
- ^ Israde-Alcantara, I.; Bischoff, J.L.; Dominguez-Vazquez, G.; Li, H.-C.; Decarli, P.S.; Bunch, T.E.; et al. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences. 2012, 109 (13): E:738–747. Bibcode:2012PNAS..109E.738I. PMC 3324006 . PMID 22392980. doi:10.1073/pnas.1110614109 .
- ^ Kvasnytsya, Victor; Wirth; Dobrzhinetskaya; Matzel; Jacobsend; Hutcheon; Tappero; Kovalyukh. New evidence of meteoritic origin of the Tunguska cosmic body. Planetary and Space Science. August 2013, 84: 131–140 [2021-12-19]. Bibcode:2013P&SS...84..131K. doi:10.1016/j.pss.2013.05.003. (原始内容存档于2023-03-04).
- ^ Redfern, Simon. Russian meteor shockwave circled globe twice. BBC News. British Broadcasting Corporation. [28 June 2013]. (原始内容存档于2022-05-17).
- ^ Bundy, F.P.; Kasper, J.S. Hexagonal diamond — a new form of carbon. Journal of Chemical Physics. 1967, 46 (9): 3437. Bibcode:1967JChPh..46.3437B. doi:10.1063/1.1841236.
- ^ He, Hongliang; Sekine, T.; Kobayashi, T. Direct transformation of cubic diamond to hexagonal diamond. Applied Physics Letters. 2002, 81 (4): 610. Bibcode:2002ApPhL..81..610H. doi:10.1063/1.1495078.
- ^ Bhargava, Sanjay; Bist, H.D.; Sahli, S.; Aslam, M.; Tripathi, H.B. Diamond polytypes in the chemical vapor deposited diamond films. Applied Physics Letters. 1995, 67 (12): 1706. Bibcode:1995ApPhL..67.1706B. doi:10.1063/1.115023.
- ^ Nishitani-Gamo, Mikka; Sakaguchi, Isao; Loh, Kian Ping; Kanda, Hisao; Ando, Toshihiro. Confocal Raman spectroscopic observation of hexagonal diamond formation from dissolved carbon in nickel under chemical vapor deposition conditions. Applied Physics Letters. 1998, 73 (6): 765. Bibcode:1998ApPhL..73..765N. doi:10.1063/1.121994.
- ^ Misra, Abha; Tyagi, Pawan K.; Yadav, Brajesh S.; Rai, P.; Misra, D.S.; Pancholi, Vivek; Samajdar, I.D. Hexagonal diamond synthesis on h-GaN strained films. Applied Physics Letters. 2006, 89 (7): 071911. Bibcode:2006ApPhL..89g1911M. doi:10.1063/1.2218043.
- ^ Nur, Yusuf; Pitcher, Michael; Seyyidoğlu, Semih; Toppare, Levent. Facile synthesis of poly(hydridocarbyne): A precursor to diamond and diamond-like ceramics. Journal of Macromolecular Science, Part A. 2008, 45 (5): 358. S2CID 93635541. doi:10.1080/10601320801946108.
- ^ Nur, Yusuf; Cengiz, Halime M.; Pitcher, Michael W.; Toppare, Levent K. Electrochemical polymerizatıon of hexachloroethane to form poly(hydridocarbyne): A pre-ceramic polymer for diamond production. Journal of Materials Science. 2009, 44 (11): 2774. Bibcode:2009JMatS..44.2774N. S2CID 97604277. doi:10.1007/s10853-009-3364-4.
- ^ Lavars, Nick. Scientists produce rare diamonds in minutes at room temperature. New Atlas. 18 November 2020 [12 February 2021]. (原始内容存档于2021-01-18).
- ^ McCulloch, Dougal G.; Wong, Sherman; Shiell, Thomas B.; Haberl, Bianca; Cook, Brenton A.; Huang, Xingshuo; Boehler, Reinhard; McKenzie, David R.; Bradby, Jodie E. Investigation of room temperature formation of the ultra-hard nanocarbons diamond and lonsdaleite. Small. 2020, 16 (50): 2004695 [2020-11-21]. ISSN 1613-6829. PMID 33150739. S2CID 226259491. doi:10.1002/smll.202004695. (原始内容存档于2022-05-07).
- ^ Lab made hexagonal diamonds stiffer than natural cubic diamonds. Phys.org. March 2021 [2021-12-18]. (原始内容存档于2022-05-26).
外部链接
- Mindat.org (页面存档备份,存于互联网档案馆) accessed 3/13/05.
- Webmineral (页面存档备份,存于互联网档案馆) accessed 3/13/05.
- Anthony, J.W., et al (1995), Mineralogy of Arizona, 3rd.ed.
- Frondel, C. & U.B. Marvin (1967), Lonsdaleite, a new hexagonal polymorph of diamond. Nature: 214: 587-589
- Frondel, C. & U.B. Marvin (1967), Lonsdaleite, a hexagonal polymorph of diamond, Am.Min.: 52
- Bianconi, P. et al (2004), Diamond and Diamond-like Carbon from a Preceramic Polymer. J. Am. Chem. Soc. Vol. 126, No. 10, 3191-3202