弗羅貝尼烏斯定理

弗羅貝尼烏斯定理指出(光滑的情況):

URn的開集,FΩ1(U)常數階r階的子模。則F可積當且僅當對每個p ∈ U莖(stalk)Fpr恰當微分形式給出。

幾何上來看,它說每個1-形式的r階可積模和一個余維為r的相同。這是研究向量場和層理論的基本工具之一。

這個結論在解析1-形式和和樂情況下也成立,但要把R換成C。它可以推廣到高階的微分形式,在有些條件下,也可以推廣到有奇點的情況。

也有用向量場表達的定理。存在和如下向量場相切的V子流形的充分條件

X1, X2, ..., Xr,

可以表達為任意兩個場的李括號

[Xi,Xj]

包含在這些場撐成的空間中。因為李括號可在子空間上取,這個條件也是必要的。定理的這兩種表述是因為李括號和外微分是相關的。

上面最後這個表述可以用來表明向量場在流形上的可積性。定理的這個變種表明流形M上的任何光滑向量場X可以積分,得到一個單參數族的曲線。這個可積性是因為定義曲線的方程是一階常微分方程,所以可積性有皮卡-林德洛夫定理保證。


參見

參考