圖論術語

維基媒體列表條目

圖論中有許多專有名詞,此處總結了一些名詞的一般意義和用法。

基本術語

一個(一般記作 )由兩類元素構成,分別稱為「頂點」(或節點、結點)和「」。每條邊有兩個頂點作為其端點,我們稱這條邊「連接」了它的兩個端點。因此,邊可定義為由兩個頂點構成的集合(在有向圖中為有序對,見下文「方向」一節)。

圖也可以用其他模型來表示,如定義在頂點集合上的二元布爾函數,或者方形(0,1)-矩陣

頂點或邊上有標號的圖稱為有標號的,否則為無標號的。它們的區別在於,無標號的圖並沒有為頂點或邊指定一個特定的順序。

圖的標號一般指按某一規則為圖的頂點或邊指定一個標號。標號通常是自然數,且一般互不相同。

 
一個有標號的簡單圖,點集V = {1, 2, 3, 4, 5, 6},邊集E = {{1,2}, {1,5}, {2,3}, {2,5}, {3,4}, {4,5}, {4,6}}。

一個超邊是允許連接任意多個(可以多於兩個)頂點的「」。含有超邊的「圖」稱為超圖。邊可視為恰連接兩個頂點的超邊,因此圖可視為一種特殊的超圖。

空圖禿圖是沒有邊的圖。

如果一個圖有無窮多的頂點和/或邊,則稱其為無窮的,否則為有窮的。如果一個圖是無窮的,但每個頂點的度(見下)是有限的,則稱為局部有窮的。一般假定「圖」指有窮圖。

兩個圖  ,如果存在  之間的一一對應,使得圖 中兩個頂點相連若且唯若它們在圖 中的對應頂點相連,則稱圖   同構,記作 。類似地,如果僅僅是  的映射而不一定是一一對應,則稱此映射是  同態

圖論中最有名圖之一。

一條一般表示為連接其兩個端點的曲線。以兩個頂點  為端點的邊一般記作   。一條邊連接兩個頂點uv時,稱uv相鄰。圖 的邊集一般記作 ,當不發生混淆時可簡記為 

補圖

 補圖 是這樣一的圖,它的點集與 相同,而每條邊 存在於 中若且唯若它不存在於 中。

頂點

一個頂點一般表示為一個點或小圓圈。一個圖 頂點集(點集)一般記作 ,當不發生混淆時可簡記為 。圖 為其頂點數目,亦即| |。

若兩個點之間有一條邊,則這兩個點相鄰。關聯一個點 的邊的條數稱為是 度數(degree)或價(valency)。特別的,若 不是多重圖時,它等於這一點的鄰點個數。

一個頂點被稱作孤立頂點,當它的度數為 

 最小度記為 

 最大度記為 

 平均度記為 

 k-正則,當 的所有頂點都有相同的頂點度k。特別的,3-正則圖被稱作立方圖

一個圖的獨立集是圖中一些兩兩不相鄰的頂點所形成的集合。

G是二分圖若且唯若它的點集V能被劃分成兩塊XY,使得對於G中的任意一條邊,它有一個端點屬於X而另一個端點屬於Y

環(圖論)

距離

距離是兩個頂點之間經過最短路徑的邊的數目,通常用 表示。

頂點 偏心率(eccentricity),用來表示連接圖 中的頂點 到圖 中其它頂點之間的最大距離,用符號 表示。

圖的直徑(diameter),表示取遍圖的所有頂點,得到的偏心率的最大值,記作 。相對於直徑的一個概念是圖的半徑(radius),表示圖的所有點的偏心率的最小值,記作 。這兩者間的關係是: 

圖論中著名的問題。

立方圖

連通圖/連通性

 連通的,如果非空圖 的任意兩個頂點之間均有一條路相連。

 k-連通的,如果非空圖 的任意兩個頂點之間都有 條獨立路相連。k-連通的的另外一個定義是:若 ,且對任意滿足 的子集 均有 是連通的,則稱 k-連通的。由門格爾定理,易知這兩個定義是等價的。通過k-連通的概念,定義使得 k-連通的最大整數 稱作 連通度

類似的,還可以引入k-邊連通的概念:稱一個 的圖 k-邊連通的,如果對任意一個滿足 的邊的集合  均是連通的。同樣, 邊連通度是使得 k-邊連通的最大整數。

計算機科學中最有名的問題之一。

歐拉路徑

一筆畫問題、也看哈密爾頓環。

庫拉托夫斯基定理描述了有點平面圖。有名的歐拉公式也說:V-E+F=2. 這是歐拉示性數

嵌入

路徑

路徑(walk),又譯作途徑。一個長度為 的路徑是一個非空的頂點和邊的交錯序列 ,使得對於所有 均有 。特別的,當 時,稱這個路徑是閉的(closed);當路徑中的頂點互不相同,得到 的一條路。[1]

 
有標號的樹,有6個頂點和5條

連通無圈圖稱為,一般記為T。其中,度數為1的頂點稱為葉子,否則稱為內點。有時我們會從樹中選出一個頂點作為特殊頂點,稱之為以示區分,此時稱此樹為有根樹。有根樹常作為有向無環圖來處理。

T的連通子圖稱為T子樹

樹也是一個團的森林。

森林

無環(不一定連通)圖稱為森林,森林F的子圖稱為F的子森林。

如果圖G的一個生成子圖是樹,則稱該子圖為生成樹

是僅有一個頂點不是葉子的樹。星也可以表示為完全二分圖K1,n

縮圖

 
完全圖K5

圖中的是由圖中兩兩相鄰的頂點構成的集合。

完全圖是所有頂點兩兩相鄰的圖。n完全圖,記作Kn。如圖所示為K5n階完全圖有n(n-1)/2條邊。

重要的計算機科學最優化理論、與算法學的題目。也看最大流最小割定理

圍長定義為圖所包含的最短長,也被稱為"girth"。

相鄰

兩頂點相鄰,意思是之間有一條邊。

葉子

看以上的樹術語。

自環

一個自環是兩個端點為同一頂點的邊。如果有多於一條邊連接同一對頂點,則它們均被稱為重邊。一個圖的重數是重複次數最多的邊的重複次數。如果一個圖不含自環或重邊,則稱為簡單圖。多數情況下,如無特殊說明,可以假定「圖」總是指簡單圖。

圖着色問題包含四色定理,數學中最有名的問題之一。現代的證明用電腦、文章很長。

子圖

兩個圖GH,如果V(H)V(G)子集E(H)E(G)的子集(當然,E(H)中只能包含將V(H)中的頂點相連的邊)則稱HG子圖。如果圖GH不相等,即V(H)V(G)真子集E(H)E(G)的真子集,則稱HG真子圖。如果HG的子圖或者存在一個G的子圖與H同構,則稱G包含H

如果圖G的子圖H滿足V(H)=V(G),即圖H包含圖G的所有頂點,則稱HG支撐子圖生成子圖

如果圖G的子圖H滿足邊(u,v)在圖H中若且唯若邊(u,v)在圖G中,即圖H包含了圖G中所有兩個端點都在V(H)中的邊,則稱HG導出子圖

對於圖的某個性質而言,如果圖G具有此性質而G的任一真子圖都不具有此性質,則稱G是具有該性質的極小圖。類似地,如果圖G具有此性質而任一以G為真子圖的圖都不具有此性質,則稱G是具有該性質的極大圖

重要的計算機科學、與算法學的題目。也看Dijkstra算法Kruskal算法、等。

定理術語

圖的方向

有向無環圖

代數圖論

代數圖論

不變量

虧格(幾何拓撲

看以上的平面圖

譜圖論

參考來源

  1. ^ R.Diestel. 图论 第四版. 高等教育出版社. : 10. 

參見