迪姆方程

迪姆方程以色列數學家哈利·迪姆創建的三階非線性偏微分方程:

Bäcklund變換解

 
Dym eq Backlund transform solution animation

通過Bäcklund變換可得迪姆方程的分析解[1]

 


近似解

 
Harry Dym nlpde 3d animation

迪姆方程有解析解[2]

 

其中

 

五次迭代後可得近似解:

 

阿多米安近似法

 
 

阿多米安分解法可求得迪姆方程的柯西問題近似解[3]

初始條件:u(0)=cos(x)

pa := (.53823*sin(10.*x)+0.16931e-1*sin(4.*x)+.72240*sin(8.*x)+.24408*sin(6.*x)+0.57870e-4*sin(2.*x))*t^9+(0.59326e-2*cos(3.*x)+0.13563e-5*cos(x)+.55850*cos(7.*x)+.46338*cos(9.*x)+.15138*cos(5.*x))*t^8+(-0.13889e-2*sin(2.*x)-.43393*sin(6.*x)-0.88889e-1*sin(4.*x)-.40635*sin(8.*x))*t^7+(-.33908*cos(5.*x)-0.47461e-1*cos(3.*x)-0.10851e-3*cos(x)-.36474*cos(7.*x))*t^6+(.26667*sin(4.*x)+0.20833e-1*sin(2.*x)+.33750*sin(6.*x))*t^5+(.21094*cos(3.*x)+.32552*cos(5.*x)+0.52083e-2*cos(x))*t^4+(-.16667*sin(2.*x)-.33333*sin(4.*x))*t^3+(-.12500*cos(x)-.37500*cos(3.*x))*t^2+.50000*t*sin(2.*x)+cos(x)


初始條件 u(0)=cosh(x)

pa := (-.5382*sinh(10.*x)-.7224*sinh(8.*x)-.2441*sinh(6.*x)-0.5787e-4*sinh(2.*x)-0.1693e-1*sinh(4.*x))*t^9+(.4634*cosh(9.*x)+0.5933e-2*cosh(3.*x)+.5585*cosh(7.*x)+.1514*cosh(5.*x)+0.1356e-5*cosh(x))*t^8+(-.4063*sinh(8.*x)-0.8889e-1*sinh(4.*x)-.4339*sinh(6.*x)-0.1389e-2*sinh(2.*x))*t^7+(0.1085e-3*cosh(x)+0.4746e-1*cosh(3.*x)+.3647*cosh(7.*x)+.3391*cosh(5.*x))*t^6+(-0.2083e-1*sinh(2.*x)-.2667*sinh(4.*x)-.3375*sinh(6.*x))*t^5+(.3255*cosh(5.*x)+0.5208e-2*cosh(x)+.2109*cosh(3.*x))*t^4+(-.3333*sinh(4.*x)-.1667*sinh(2.*x))*t^3+(.3750*cosh(3.*x)+.1250*cosh(x))*t^2-.5000*t*sinh(2.*x)+cosh(x)

參考文獻

  1. ^ ^ Fritz Gesztesy and Karl Unterkofler, Isospectral deformations for Sturm–Liouville and Dirac-type operators and associated nonlinear evolution equations, Rep. Math. Phys. 31 (1992), 113–137.
  2. ^ W HeremanP P, BanerjeeSS and M R Chatterjee, Derivation and implicit solution of the Harry Dym equation and its connections with the Korteweg-de Vries equation;J. Phys. A: Math. Gen. 22 (1989) 241-255.
  3. ^ Inna Shingareve Carlos Lizarraga Celaya,Solving Nonlinear Partial Differential Equations with Maple and Mathematica p230-236, Springer
  1. *谷超豪 《孤立子理論中的達布變換及其幾何應用》 上海科學技術出版社
  2. *閻振亞著 《複雜非線性波的構造性理論及其應用》 科學出版社 2007年
  3. 李志斌編著 《非線性數學物理方程的行波解》 科學出版社
  4. 王東明著 《消去法及其應用》 科學出版社 2002
  5. *何青 王麗芬編著 《Maple 教程》 科學出版社 2010 ISBN 9787030177445
  6. Graham W. Griffiths William E.Shiesser Traveling Wave Analysis of Partial Differential p135 Equations Academy Press
  7. Richard H. Enns George C. McCGuire, Nonlinear Physics Birkhauser,1997
  8. Inna Shingareva, Carlos Lizárraga-Celaya,Solving Nonlinear Partial Differential Equations with Maple Springer.
  9. Eryk Infeld and George Rowlands,Nonlinear Waves,Solitons and Chaos,Cambridge 2000
  10. Saber Elaydi,An Introduction to Difference Equationns, Springer 2000
  11. Dongming Wang, Elimination Practice,Imperial College Press 2004
  12. David Betounes, Partial Differential Equations for Computational Science: With Maple and Vector Analysis Springer, 1998 ISBN 9780387983004
  13. George Articolo Partial Differential Equations & Boundary Value Problems with Maple V Academic Press 1998 ISBN 9780120644759