伯努利試驗
此條目没有列出任何参考或来源。 (2014年8月19日) |
伯努利試驗(Bernoulli trial,或譯為白努利試驗)是只有兩種可能結果(“成功”或“失敗”)的單次隨機試驗,即對于一個隨机變量X而言,
本試驗是由雅各布·白努利(德語:Jakob I. Bernoulli,1654年12月27日-1705年8月16日)所提出。
來自日常生活的解釋
伯努利試驗指的是單次事件,而這次事件的結果是兩個可能性結果中的一個。這樣的事件都可以表達成“是或否”("yes or no")問題。例如:
- 硬幣掉落後是人頭朝上嗎?
- 剛出生的小孩是個男孩嗎?
- 一個人的雙眼是彩色的嗎?
- 在有蚊子的地方噴灑殺蚊劑,蚊子會死掉嗎?
- 一個可能是顧客的人會買我的產品嗎?
- 公民(citizen)會投給特定的候選人嗎?
- 雇员会投票支持工会吗?
因此結果稱為「成功」和「失敗」,而結果不應該照字面推斷。伯努利試驗的例子包括:
- 拋硬幣。在這裡,正面(人頭面)通常表示成功而反面(刻字面)表示失敗。一枚均勻硬幣,按照定義成功機會是一半p=1/2。
- 擲骰子,在這個例子裡我們稱六是"成功"而其他都是"失敗",p=1/6。
- 在四式選擇題,答對的機會p=1/4。
- 實施一個政見調查(political opinion poll),隨機選擇一個投票者並了解這個投票者在接下來的公民投票(referendum)會不會投"是"。
在數學上,這樣的試驗是以隨機變量為模型,而隨機變量只能有兩個值:0和1,1被認為是"成功"。在單次的伯努利試驗中,如果 p 是成功的概率,那麼將呈現伯努利分布,此時隨機變量的期望值就是 p ,且其標準差為
一個伯努利过程(Bernoulli process)是由重複出現獨立但是相同分佈的伯努利試驗組成,例如拋硬幣十次,而此時呈現之結果將呈現二項分布。