误差函数

乙狀結構特殊函數,發生在概率,統計和偏微分方程中

数学中,误差函数[注 1](英语:Error function)是一个特殊函数[注 2],符号。误差函数在概率论统计学以及偏微分方程中都有广泛的应用。它的定义如下:[1][2]

误差函数
互补误差函数

分类

互补误差函数,记为 erfc,在误差函数的基础上定义:

 

虚误差函数,记为 erfi,定义为:

 

复误差函数,记为w(z),也在误差函数的基础上定义:

 

词源

误差函数来自测度论,后来与测量误差无关的其他领域也用到这一函数,但仍然使用误差函数这一名字。

误差函数与标准正态分布的积分累积分布函数 的关系为[2]

 

性质

复平面上的图
Integrand exp(−z2)
erf(z)

误差函数是奇函数

 

对于任何 复数 z:

 

其中   表示 z复共轭

复平面上,函数 ƒ = exp(−z2) 和 ƒ = erf(z) 如图所示。粗绿线表示 Im(ƒ) = 0,粗红线表示 Im(ƒ) < 0, 粗蓝线为 Im(ƒ) > 0。细绿线表示 Im(ƒ) = constant,细红线表示 Re(ƒ) = constant<0,细蓝线表示 Re(ƒ) = constant>0。

在实轴上, z → ∞时,erf(z) 趋于1,z → −∞时,erf(z) 趋于−1 。在虚轴上, erf(z) 趋于 ±i∞。

泰勒级数

误差函数是整函数,没有奇点(无穷远处除外),泰勒展开收敛。

误差函数泰勒级数:

 

对每个复数 z均成立。 上式可以用迭代形式表示:

 

误差函数的导数

 

误差函数的 不定积分为:

 

逆函数

 
逆误差函数

逆误差函数 可由 麦克劳林级数表示:

 

其中, c0 = 1 ,

 

即:

 

逆互补误差函数定义为:

 

渐近展开

互补误差函数的渐近展开


 

其中 (2n – 1)!! 为 双阶乘x为实数,该级数对有限 x发散。对于  ,有

 

其中余项用以 大O符号表示为

  as  .

余项的精确形式为:

 

对于比较大的 x, 只需渐近展开中开始的几项就可以得到 erfc(x)很好的近似值。[注 3]

连分式展开

互补误差函数的连分式展开形式:[3]

 

初等函数近似表达式

     (最大误差: 5·10−4)

其中, a1 = 0.278393, a2 = 0.230389, a3 = 0.000972, a4 = 0.078108

     (最大误差:2.5·10−5)

其中, p = 0.47047, a1 = 0.3480242, a2 = −0.0958798, a3 = 0.7478556

     (最大误差: 3·10−7)

其中, a1 = 0.0705230784, a2 = 0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672, a6 = 0.0000430638

     (最大误差: 1.5·10−7)

其中, p = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 = 1.061405429

以上所有近似式适用范围是: x ≥ 0. 对于负的 x, 误差函数是奇函数这一性质得到误差函数的值, erf(x) = −erf(−x).

另有近似式:

 

其中,

 

该近似式在0或无穷的邻域非常准确,x整个定义域上,近似式最大误差小于0.00035,取 a ≈ 0.147 ,最大误差可减小到0.00012。[4]

逆误差函数近似式:

 

数值近似

下式在整个定义域上,最大误差可低至  [5]

 

其中,

 
 

与其他函数的关系

误差函数本质上与标准正态累积分布函数 是等价的,

 

可整理为如下形式:

 

 的逆函数为正态分位函数,即概率单位英语Probit函数,

 

误差函数为标准正态分布的尾概率Q函数英语Q-function的关系为,

 

误差函数是米塔-列夫勒函数的特例,可以表示为合流超几何函数

 

误差函数用正则Γ函数P和 不完全Γ函数表示为

 

 符号函数.

广义误差函数

 
广义误差函数图像 En(x):
灰线: E1(x) = (1 − e −x)/ 
红线: E2(x) = erf(x)
绿线: E3(x)
蓝线: E4(x)
金线: E5(x).

广义误差函数为:

 

其中,E0(x)为通过原点的直线,  E2(x) 即为误差函数 erf(x)。

x > 0时,广义误差函数可以用Γ函数和 不完全Γ函数表示,

 

因此,误差函数可以用不完全Γ函数表示为:

 

互补误差函数的迭代积分

互补误差函数的迭代积分定义为:

 

可以展开成幂级数:

 

满足如下对称性质:

 

 

函数表

注释

  1. ^ 也称之为高斯误差函数
  2. ^ 即不是初等函数
  3. ^ 对于不太大的 x ,上文泰勒展开在0处可以快速收敛。

参见

参考文献

  1. ^ Andrews, Larry C.; Special functions of mathematics for engineers页面存档备份,存于互联网档案馆
  2. ^ 2.0 2.1 Greene, William H.; Econometric Analysis (fifth edition), Prentice-Hall, 1993, p. 926, fn. 11
  3. ^ Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. Handbook of Continued Fractions for Special Functions. Springer-Verlag. 2008. ISBN 978-1-4020-6948-2. 
  4. ^ Winitzki, Sergei. A handy approximation for the error function and its inverse (PDF). 6 February 2008 [2011-10-03]. [永久失效链接]
  5. ^ Numerical Recipes in Fortran 77: The Art of Scientific Computing (ISBN 978-0-521-43064-7), 1992, page 214, Cambridge University Press.

外部链接